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This is a user manual for our proof assistant for performing qRHL-based security proofs. The
tool is a prototype to demonstrate the logic and to experiment with security proofs. At this
point, it is not yet meant for larger developments.
This manual assumes knowledge of the underlying qRHL formalism, see [16].
The source code is published on GitHub [13].
For installation instructions see the webpage [19].

1 Architecture
The tool consists of three main components: a ProofGeneral [9] frontend, the core tool written in
Scala, and an Isabelle/HOL [7] backend with custom theories. The ProofGeneral frontend merely eases
the interactive development of proofs; once a proof script is finished, it can also be checked by the
core tool directly. The core tool implements a theorem prover for qRHL (with tactics-based backward
reasoning). Only tactics for manipulating qRHL judgements are built-in into the core tool. Many tactics
produce subgoals that are not qRHL judgments. (We call those “ambient” subgoals because they are
expressed in the ambient logic.) Those ambient subgoals are outsourced to the Isabelle/HOL backend
for simplification or solving. This way, the overall tool supports arbitrarily complex pre- and post-
conditions in qRHL statements, and arbitrarily complex expressions within programs (only limited by
what can be expressed in Isabelle/HOL). The Isabelle/HOL backend is automatically executed by the
core tool (via scala-isabelle [18]).

More precisely, when parsing a program, all expressions (e.g., 1+2 in an assignment a <- 1+2) are
sent as literal strings to Isabelle/HOL for parsing. And in a qRHL judgement such as {Cla[x1=x2]}
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example.qrhl Example.thy

isabelle Example.

classical var c : nat.
quantum var q : bit.

program P1 := { c <- square 2; }.

qrhl {Cla[c2 = 4]} call P1; ∼ skip;
{Cla[c1 = c2]}.

inline P1.
wp left.
skip.
simp!.

qed.

lemma test: 1+1=2.
simp!.

qed.

theory Example
imports QRHL.QRHL

begin

definition "square x = x*x"

lemma square_simp[simp]:
"square x = x*x"
using square_def by auto

end

Figure 1: Example qRHL proof script. The files are bundled with the tool.

x <- x+1; ∼ skip; {Cla[x1̸=x2]}, the predicates Cla[x1=x2] and Cla[x1̸=x2] are also parsed by Isa-
belle/HOL. In order to support the different constructions used in predicates (see Section 4 in [16], e.g.,
Cla[. . .] or ≡quant), we include an Isabelle/HOL theory QRHL.thy in the tool that contains the definitions
and simplification rules needed for reasoning about quantum predicates.

We stress that although we use Isabelle/HOL as a backend, this does not mean that our tool is an
LCF-style theorem prover (i.e., one that breaks down all proofs to elementary mathematical proof steps).
All tactics in the tool, and many of the simplification rules in QRHL.thy are axiomatized (and backed by
the proofs in this paper).1 We simply use Isabelle/HOL as a backend because it comes with rich existing
theories and tools. Embedding it in our tool avoids duplication of effort.

A proof script for our tool consists of a UTF-8 encoded qRHL file example.qrhl, optionally accom-
panied by an Isabelle/HOL theory Example.thy. See Figure 1. The accompanying Isabelle/HOL theory
can define additional constants (e.g., square) and simplification rules (e.g., square_simp), etc.

To execute the example, execute proofgeneral.sh example.qrhl2 and then use, e.g., Ctrl-C
Ctrl-N to evaluate the file step by step. (If emacs is not available, you can also run bin/qrhl
example.qrhl noninteractively.) To edit Example.thy, execute isabelle.sh Example.thy. (On Win-
dows: isabelle.ps1.)

Configutation file. General configuration of the tool is done via the file qrhl-tool.conf. More specif-
ically, qrhl-tool looks for installation_dir/qrhl-tool.conf and home_directory/.qrhl-tool.conf,
in that order. All found configuration files are loaded, with entries in the later ones overriding earlier
ones. The following entries are supported (one per line):

• isabelle-home = dir
This specifies the location of the Isabelle distribution. (I.e., the directory that contains files such
as Isabelle2022, ROOTS, etc.)

• afp-root = dir
This specifies the location of the AFP (Archive of Formal Proofs). (I.e., the directory that contains
subdirectories such as thys, etc, tools.) If your Isabelle installation is already configured to find
the AFP (e.g., via the steps from [6]), this key is optional.

Furthermore, qrhl-tool reads Isabelle configuration files (files ROOT and ROOTS, see [21]) from the di-
rectory containing the .qrhl-files containing the isabelle command.

1The theory QRHL.thy is integrated in executable in the binary distribution but can be inspected at https://github.
com/dominique-unruh/qrhl-tool/blob/master/src/main/isabelle/QRHL.thy.

2Or proofgeneral.ps1 on Windows. And see [14] for more information how to install/invoke ProofGeneral for
qrhl-tool.
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2 Proof scripts
qRHL proof scripts contain a mixture of declarations (e.g., defining a variable or a program), claims
(e.g., qRHL judgements), and proofs. Syntactically, the script is a sequence of commands.

A command is a single or multiline string, terminated with a “.”. Inside a command, line breaks are
treated like spaces.

Comments start with “#” and continue till the end of the line. Comments need to be on their own
line or separated by whitespace from preceding code.3

Isabelle initialization. The first command in a proof script must be “isabelle.” This initializes Isa-
belle/HOL. If a custom Isabelle/HOL theory “Example.thy” is to be used, use the command “isabelle
Example.” instead. Custom Isabelle/HOL theories should import the theory QRHL to get access to qRHL-
related definitions, lemmas, and simplification rules. (But this is not mandatory.) Several theories can
be specified in one isabelle command (comma separated). Repeated identical isabelle commands
are allowed. See Section 6 for more information on accompanying theories.

By default, Isabelle is loaded with the session QRHL (defined by the qrhl-tool distribution). A
different base session can be specified using the syntax “isabelle [session_name] theories.”. This
session needs to be known to Isabelle, it can be configured via ROOT and ROOTS files in the same directory
as the .qrhl-file containing the isabelle command. It is strongly recommended that the session is based
on the session QRHL or includes the theories QRHL.QRHL and QRHL.QRHL_Operations, otherwise loading
will be very slow. See [21] for more information on specifying sessions.

It is also possible to include individual Isabelle commands directly inside the .qrhl file using the
“isabelle_cmd” command. For example:

isabelle_cmd typedef my_type = "UNIV :: nat set" by auto.

Note that isabelle_cmd must not be used inside a proof (but see the isa tactic for using Isabelle
methods in a proof). And if the command starts a proof on the Isabelle level (as typedef does in the
above example), then the same command must finish the proof (as by auto does in the above example).
It is not possible to split this into two isabelle_cmd commands. (For complex situations, it is therefore
recommended to edit Isabelle commands directly using Isabelle in a .thy file.)

Including files. The include command allows us to include a another qrhl file. “include
"filename". includes the file filename. The effect of including a file is the same as directly copy-
ing its content into the current file, with two differences:

• A command to include a file that has already been included will be ignored. This means that several
files can include the same file without duplicating declarations, allowing for a dag dependency
structure.

• In interactive mode (i.e., in ProofGeneral), the content of an included file is executed in “cheat
mode”. That is, the proofs in those files are assumed to be correct and not checked. This speeds
up development. (To check a file file.qrhl and all recursively included files, use the command
line bin/qrhl file.qrhl.)

Declaring variables. There are three different kinds of variables: classical, quantum, and ambient
variables. Classical and quantum variables represent classical and quantum program variables as defined
in [16]. These can be declared using the following commands

classical var x : type.
quantum var q : type.

respectively. Here x,q are the variable names, and type is the type of the variable. That is, in the
notation of [16], Typex = UNIVtype where UNIVtype is the universe of all values of type type. type
can be an arbitrary type that is understood by Isabelle/HOL. (If custom types are needed, they can be
defined in an accompanying theory. Simple examples of predefined types are bit, bool, nat (natural
numbers), int (integers).) Any program variable that is used anywhere in the proof script must be

3I.e., “# comment” is a comment, “isabelle. # comment” is a command followed by a comment, but “isabelle.#
comment” does not contain a comment (and leads to an error). This allows us to use the # character (used by Isabelle for
list cons) inside formulas as long as it is not prefixed by space.
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declared. If a variable x was defined, then the names x1 and x2 are available in predicates to refer to
that variable in the left/right program.

Types used with classical var and quantum var must satisfy an important condition. Namely,
they must be in the type class4 universe.5 For most predeclared types, this will already be the case,
but if not, follow the instructions in Section 6.1.

An ambient variable simply stands for a fixed but arbitrary value. That is, ambient variables are im-
plicitly all-quantified. In other words, ambient variables are free variables of the ambient logic. Ambient
variables are declared using

ambient var x : type.

where type is again an arbitrary Isabelle/HOL type.

Program declarations. There are two kinds of declarations for programs. The first is

program name := { code }.

which defines name to refer to the program described by code. Logically, this simply introduces an
abbreviation for referring to a concrete code fragment. This code fragment can then be embedded in
other code fragments (see the call statement in the syntax of programs, Section 3). For the syntax of
code, see Section 3.

The second kind of declaration declares an unspecified program:

adversary name free v1 ,v2 ,v3 ,...,vn.

That is, after this declaration, name is assumed to refer to some program containing (at most) the
free program variables v1,. . . ,vn. Nothing beyond that restriction on its variables is assumed. Thus,
if we prove a statement referring to name, this statement holds for any program name. We use these
declarations to model adversaries.

In some cases, an adversary may invoke other programs (e.g., an encryption oracle). In that case, we
declare an adversary with “holes” using:

adversary name free v1 ,v2 ,v3 ,...,vn calls ?,?,...,?.

This means the program name contains variables v1,v2,v3,...,vn, as well as n “holes” (one for each
question mark).6 We write name(p1,...,pn) to refer to name with p1,. . . ,pn inserted instead of the
holes. (For example, name(enc,dec) would run the adversary name and allow it to invoke the programs
enc and dec.) Note that the variables v1,v2,v3,...,vn do not have to include variables contained in
the programs p1,...,pn.

In addition to specifying the free variables of name, the adversary command allows us to specify
various other variable sets. The full syntax of the command is:

adversary A free F
readonly R
overwritten O
inner I
covered C
calls ?,?,...,?.

4A type class represents a property of a type, for example, the type class finite applies only to types with finite domain.
5The type class universe guarantees that the type is small enough (its cardinality is at most ℶi for some i ∈ N). Without

this restriction, it would be possible, e.g., to have a program variable of type P set, where P is the type of all programs.
That would mean that programs can contain arbitrary elements of P set. Hence the powerset of P can be embedded in P
which is impossible. Restricting program variables to small types makes it possible to define P (and related types). This is
not a restriction in practice since all types built from basic types using powersets, functions, and inductive datatypes are
small in this sense.

6Formally, it declares name to refer to a multi-hole context with n holes in the sense of footnote 17 in [16].
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All variable specifications except free F are optional but they have to occur in this order. F are (an
upper bound on) the free variables of name. A. R are a lower bound on the readonly variables.7 O is a
lower bound on the overwritten variables, that is, variables in O are guaranteed to be overwritten before
they are read by A (or any of the oracles invoked by A). I is an upper bound on the inner variables of
A, that is, all local variables that have an oracle call in their scope. C are a lower bound for the covered
variables of A, i.e., those variables that are local over every hole of A. Precise definitions of these variable
sets are given in [15]. The default value for all these variable sets are the empty set.

These variable sets are necessary to avoid certain subtleties involving oracle calls. For example, an
oracle O may access a global variable x, but the adversary may invoke O in a context where x is declared
as a local variable. This will hide the global state of x from O. Thus we need to know for which variables
this happens. This is precisely described by the inner variables I.

Note that besides declaring the different variable sets, the user does not have to care about them.
When defining programs explicitly (using the program command), all variable sets will be automatically
derived. Some tactics such as the frame and the equal tactic heavily rely on the various variable sets
to decide whether they can be applied.

Since the language in this paper does not model procedure calls, adversaries are simply program
fragments that get executed as part of a larger program. In particular, there is no syntactic provision
for inputs and outputs of an adversary. Instead, all communication with the adversary has to take place
through global variables. We recommend the following approach to the definition of adversaries: One
declares two variables for the internal state of the adversary (one classical, one quantum), declares some
variables for input/output of the adversary (as needed in the specific context where the adversary is used),
and then declares an adversary that uses all those variables (with an informal comment detailing which
variables are intended as input and output). For example, in prg-enc-rorcpa.qrhl (see Section 7.1),
we have an adversary A2 that takes an message c and returns a bit b. The declaration is:

quantum var qglobA : string.
classical var cglobA : string.
classical var c : msg.
classical var b : bit.
# A2: inputs: c; outputs: b
adversary A2 free c,b,cglobA ,qglobA.

(Here the adversary state is in cglobA and qglobA. Those variables are also shared with other program
fragments representing different invocations of the same adversary. We use the type string for the state
to ensure that the type is big enough to allow to represent any computation.)

Note that this approach also allows us to model adversaries that cannot communicate by simply
giving them no shared global variables.

Furthermore, in a reduction-based security proof, we need to construct a new adversary B from an
existing adversary A. This can be done by using the program-command to define a new adversary B that
invokes the existing (unspecified) adversary program A. For example, prg-enc-rorcpa.qrhl defines:

# B: inputs: r; outputs: b
program B := { call A1; c <- r+m; call A2; }.

Goals. To start a proof, one first needs to state a goal. There are two kinds of goals: qRHL judgements,
and ambient logic statements. A qRHL judgement goal is opened using the qrhl-command:

qrhl name: {pre} code1 ∼ code2 {post}.

Here name is the name under which the proven fact will be stored. And pre and post are quan-
tum predicates (parsed by Isabelle/HOL, see Section 4), and code1, code2 are programs (see Sec-
tion 3 for the syntax). The meaning of this command is that we start a proof of the qRHL judgment
{pre}code1∼∼∼ code2{post}.

The second kind of goal is an ambient logic goal, opened using the lemma-command:

lemma name: formula.

7That is, F \R is an upper bound for the written variables of A.
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Here formula is an arbitrary formula that Isabelle/HOL understands (ambient logic). For example,

lemma test: 1+1=2.

starts the proof of a lemma called test of the fact that 1+1 = 2. Once a lemma is proven, the new fact
can be referred to like any other fact known to Isabelle/HOL, for example when using the tactic simp.

Note that formula cannot contain qRHL judgments.8 It is, however, possible to refer to named pro-
grams (declared using the program-command or the adversary-command) in Isabelle/HOL expressions
of the following form:

Pr[b:prog(rho)]

Here b must be an expression of type bool, and prog must be the name of a declared program, and
rho must be an expression of type program_state (typically rho is simply an uninterpreted ambient
variable). Then Pr[b:prog(rho)] denotes the probability that b = true after executing prog with
initial state ρ (as in Definition 9 in [16]). For example,

lemma secure: Pr[b=1: game1(rho)] = Pr[b=1: game2(rho)].

would start a goal stating that the programs game1 and game2 have the same probability of outputting 1
in variable b, for any initial state. Such goals can be transformed into qRHL goals using the tactic
byqrhl, but they can also be reasoned about in Isabelle/HOL (via the simp tactic) which treats those
probabilities as uninterpreted values ∈ [0, 1].

Proofs. Once a goal has been opened using either qrhl or lemma, the tool is in proof mode. In this
mode, the state consists of a list of subgoals. (In ProofGeneral, the current list of subgoals are listed in
the *goals* window.) Each subgoal is one of:

• a qRHL judgment (like the ones created by the qrhl command)
• an ambient logic formula (like the ones created by lemma)
• a denotational equivalence (two programs that are claimed to have the same denotational seman-

tics)9
(A qRHL subgoal and a denotational-equivalence subgoal can additionally contain a list of assumptions
A1, . . . , An that are ambient logic formulas. In this case, the interpretation is that the qRHL judgment
/ equivalence holds whenever those assumptions are satisfied.)

A proof consists of a sequence of tactic invocations. Each tactic transforms the first subgoal into zero
or more subgoals. (With the guarantee that the new goals together imply the original subgoal.) The
available tactics are described in Section 5 below.

When the list of subgoals is empty, the proof must be finished by

qed.

This finishes the proof, and further declarations can be made, or new goals opened. If the current
proof started with a lemma command, the proven fact is stored under the name specified in the lemma
command.

Focusing. To structure proofs better, qrhl-tool supports focusing on subgoals. The command {
opens a subproof that contains only the first subgoal. When that subgoal is fully solved, the command
} closes the subproof and continues with the remaining subgoals. When { is prefixed with a subgoal
selector, e.g., 1,3,4: or 1-2:, then a subproof containing only the selected goals is opened.

Alternatively, it is possible to focus on all current subgoals one after the other with +. Each + symbol
focuses on the next one of the subgoals that were present when the first + was encountered. When one +
is encountered, all current subgoals must be focused upon with + commands one-by-one. Before the next
subgoal can be focused upon with +, the current one needs to be solved. Instead of +, any combination
of +-* can be used as a marker for focusing. The same symbol needs to be used for all subgoals on
one level, using different symbols allows nesting of focused subproofs. A goal selector can prefix the +
command but it needs to select all goals. (The effect is to reorder the goals. E.g., 3,2,1: can be used
when there are three goals to solve them in reverse order.)

See examples/focus.qrhl for simple examples of the focusing syntax.
8Strictly speaking, they can. But there is currently no convenient input syntax for this, and reasoning support is limited.
9This is equivalent to just writing denotation P = denotation Q in Isabelle or a lemma statement.
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Getting information. The print can be used to show the definition of declared mathematic objects.
Specifically, if name is the name of a variable (declared in qrhl-tool), a program (declared in qrhl-tool),
a lemma (declared in qrhl-tool or in Isabelle), or a constant (declared in Isabelle), then

print name.

outputs the declaration of that object. (If name is simultaneously the name of several of the above,
several declarations are printed.)

For programs, qrhl-tool also prints the various sets of variables (e.g., free classical variables, quantum
variables, written variables, etc.)

For constants, it provides the full Isabelle name (incl. the name of the theory) and the type.
For lemmas, it provides the statement of the lemma.

When invoked as

print goal.

it prints the current subgoals in notation understandable to Isabelle. This is useful for copy-and-pasting
the subgoal to an Isabelle-theory (see Section 6) and proving the lemma there. (After that, the tactic
rule lemmaname can be used to prove the subgoal in qrhl-tool, where lemmaname is the name chosen
for the copy-and-pasted lemma.) The qrhl-tool makes an effort to make the printed subgoal suitable
for including in Isabelle without further editing. In particular, it attempts to include all necessary type
annotations to disambiguate the lemma. (However, no guarantee can be made that this always works,
especially in the presence of complicated user-defined syntax.)

3 Programs
A program is represented as a list of statements.10 Each statement is one of the following:

Syntax Meaning
skip; The empty program skip.
x <- expr; The assignment x← expr.

x must be declared as a classical variable of some Isabelle/HOL
type T , and expr must be an Isabelle/HOL term of the same type T .
expr may contain classical and ambient variables as free variables.

Example: “x <- x+1;” increases x.

x <$ expr; The sampling x $← expr.

x must be declared as a classical variable of some Isabelle/HOL
type T , and expr must be an Isabelle/HOL term of the type T distr,
the type of distributions over T . (See the tables below for constants
for constructing distributions.) expr may contain classical and ambi-
ent variables as free variables.

Example: “x <$ uniform UNIV;” samples x uniformly from the
type of x (assuming the type of x is finite).

10This deviates slightly from the syntax of programs described in Section 3.2 in [16]. There, larger programs are composed
from smaller ones by using the binary sequential composition operation “ ;”. However, since the sequential composition is
associative (up to denotational equivalence), we can instead represent a nested application of sequential compositions as a
simple list of statements.
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q1,...,qn <q expr; The quantum initialization q1, . . . , qn
q← expr.

q1, . . . , qn must be declared as quantum variables with some Isa-
belle/HOL types T1, . . . , Tn. All qi must be distinct variables. expr
must be an Isabelle/HOL expression of type (T1 × · · · × Tn) ell2,
the type of vectors with basis T1 × · · · × Tn. (See the tables below
for constants for constructing states.) expr may contain classical and
ambient variables as free variables.

Note that our definition of well-typed programs (Section 3.2 in [16])
requires expr to be a unit vector, while in our tool, we allow expr to
be a non-normalized vector. This is simply to avoid having to define
too many different types in Isabelle/HOL (which would lead to the
need of applying type conversions very often). The tactics in the
tool take this into account and create an explicit precondition that
expr has unit length (specifically, the tactic wp which implements rule
QInit1).11

Example: “x,y <q EPR;” initializes x,y to contain an EPR pair.
(Assuming that x and y are quantum variables of type bit.)

x <- measure q1,...,qn
with measurement;

The measurement

x←measure q1, . . . , qn with measurement

x must be declared as a classical variable of some Isabelle/HOL
type Tx. q1, . . . , qn must be declared as quantum variables of
some Isabelle/HOL types T1, . . . , Tn. All qi must be distinct vari-
ables. measurement must be an Isabelle/HOL expression of type
(Tx, T1×· · ·×Tn) measurement, the type of measurements with out-
comes of type Tx. (See the tables below for constants for constructing
measurements.) expr may contain classical and ambient variables as
free variables.

Example: “x <- measure q with computational_basis;” mea-
sures the quantum variable q in the computational basis and assigns
the outcome to the classical variable x. Both variables must have the
same type.

11Formally, changing the type of programs is justified as follows: A program q1,...,qn <q expr; is interpreted as
q1, . . . , qn

q← mkUnit(e) where mkUnit(ψ) = ψ for unit vectors ψ, and mkUnit(ψ) is an arbitrary unit vector if ψ is not a
unit vector. With this interpretation, programs as implemented in our tool match the typing-rules and semantics in [16].
See footnote 27 for how this affects the rules implemented by the tactics.
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on q1,...,qn apply expr; The unitary quantum operation apply expr to q1, . . . , qn.

q1, . . . , qn must be declared as quantum variables of some Isa-
belle/HOL types T1, . . . , Tn. All qi must be distinct variables.

expr must be an Isabelle/HOL expression of type (T1×· · ·×Tn, T1×
· · · × Tn) l2bounded, the type of bounded operators. (See the tables
below for constants for constructing bounded operators.) expr may
contain classical and ambient variables as free variables.

Note that our definition of well-typed programs (Section 3.2 in [16])
requires expr to be an isometry, while in our tool, we allow expr to
be any bounded operator. This is simply to avoid having to define
too many different types in Isabelle/HOL (which would lead to the
need of applying type conversions very often). The tactics in the
tool take this into account and create an explicit precondition that
expr is an isometry (specifically, the tactic wp which implements rule
QApply1).12

Example: “on x,y apply CNOT;” applies a CNOT to the quantum
variables x,y. (They are assumed to be of type bit.)

if (c) then P1 else P2 The conditional if c then P1 else P2.

c must be an Isabelle/HOL expression of type bool. c may contain
classical and ambient variables as free variables.

The programs P1 and P2 are either single statements, or blocks of
the form { s1 s2 ... sn } where each si is a statement. (Note that
each si will end with a semicolon.)

Example: “if (x=0) then x <- x+1; else skip;” is equivalent
to x <- 1; (assuming x is of type bit).

Example: “if (x=0) then { x <- 1; y <- 1; } else { x <-
0; y <- 0; }” sets x and y to 1 if x=0, and to 0 otherwise.

while (c) then P The conditional while c do P .

c must be an Isabelle/HOL expression of type bool. c may contain
classical and ambient variables as free variables.

The programs P is either a single statement, or a block of the form
{ s1 s2 ... sn } where each si is a statement. (Note that each si
will end with a semicolon.)

Example: “while (x≤0) x <- x+1;” increases x until it is positive
(assuming x is of type int).

Example: “while (x≤0) { x <- x+1; y <- y+1; }” increases
both x and y until x is positive.

12Formally, changing the type of programs is justified as follows: A program on q1, . . . , qn apply e; is interpreted as
apply mkIso(e) to q1, . . . , qn where mkIso(U) = U for isometries U , and mkIso(U) is an arbitrary isometry (e.g., the
identity) if U is not an isometry. With this interpretation, programs as implemented in our tool match the typing-rules
and semantics in [16]. See footnote 26 for how this affects the rules implemented by the tactics.
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{ local X; P } Declares local variables X in the program P .

X is a comma separated list of quantum and classical variables. Those
variables must have been declared using the classical/quantum var
command. The variables X will then be local in the program P . P
may be a single or several statements.

Semantically, { local X; P } first stores the variables X on a stack
and initializes them with a default value, then runs P , and then
restores the original value of X.

Example: “{ local z; z <- x; x <- y; y <- z }” swaps x and
y without any side effect on z.

call prog; The program prog itself.

prog must be the name of a program (declared with program
or adversary). If the adversary-command declared a program
“with n holes” (using adversary ... calls ?,...,?), then prog
is an expression of the form name(arg1,...,argn) where each
arg1,...,argn is again the name of a program (or an expression
of the form name(arg1,...,argn)).

Logically, call prog; is simply an abbreviation for the code of prog
(possibly after substituting arg1,...,argn for its holes). And if
prog was defined using program, it would be equivalent to simply
write the code from the definition of the program instead of call
prog;. (Although some tactics may treat the two cases differently.)
However, if prog was defined using adversary, the call prog; syntax
is necessary since the code of prog is not known.

We do not have a corresponding construct in the syntax from Sec-
tion 3.2 in [16] because we can simply write prog instead of call
prog ;. (For example, x <- 1; call A; x <- 0; translates to x←
1;A;x← 0.)

Note that call is not a procedure call. In particular, we cannot pass
arguments, have local variables, or get a return value. However, ar-
guments and return values can be emulated by using global variables
(see the discussion of program declarations in Section 2).

Example: “call A;” invokes the adversary A (assuming A was de-
clared using adversary A vars ...). “call A(enc,dec);” invokes
the adversary A that can call programs enc and dec (assuming A was
declared using adversary A vars ... calls ?,?).

4 Expressions and predicates
Expressions. Expressions within programs, and predicates in qRHL judgments are interpreted by
Isabelle/HOL (currently the Isabelle/HOL 2022 version), in the context of a builtin theory QRHL.
We assume some familiarity with Isabelle/HOL. Readers unfamiliar with Isabelle/HOL may study the
tutorial [8].

For experiments, it can be useful to directly invoke Isabelle/HOL (using the isabelle.sh (Linux/-
Mac) or isabelle.ps1 (Windows) script) and edit a theory that imports QRHL.QRHL.

Expressions used in assign-statements will probably only rarely use any of the custom types and
constants from QRHL.thy. However, in sampling-statements we need to construct expressions of type α
distr (distributions), and the various quantum operations need expressions of types (α, α) l2bounded, α
ell2, and (α, β) measurement. Various predefined constants for constructing expressions of those types
are described in the table below.

Predicates. Predicates (the post- and preconditions in qRHL judgments) are also interpreted by Isa-
belle/HOL. They have to be expressions of the type mem2 ccsubspace (abbreviated predicate), with
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free classical program variables (indexed with 1 or 2, i.e., if the program variable is x, then the expression
may contain x1 and x2). Here mem2 is the type of pairs of memories, and thus mem2 ccsubspace is the
type of closed subspaces of ℓ2[V1V2] where V1, V2 represent the indexed program variables.

Predicates can additionally contain quantum variables as arguments to specific constructions, e.g.,
pauliX»JqK would refer to a Pauli-X operator on quantum variable q.

Predicates can be constructed using the constants described in the tables below.

Types. The theory QRHL provides the following types. Some of those types are defined in Isabelle/HOL
using typedef, others are only axiomatized. See QRHL.thy and the theories imported therein. Others
are imported from other Isabelle libraries, most importantly Complex_Bounded_Operators [4].

In some cases, there are several possible syntaxes for entering the same type. We list all of them,
the first being the one Isabelle/HOL will use for printing the constant. In many cases, the syntax
contains special characters. These can be entered with an adapted TeX input method in Emacs (which
is automatically active in our ProofGeneral customization). In those cases we additionally mention the
character sequences to be entered in ProofGeneral for getting the special characters (marked “How to
input:” in the table below).

When defining your own types in an accompanying theory, please consult Section 6.1.

Type Meaning
bit The type of bits.

This type is isomorphic to bool, but using the type bit can lead to more
familiar notation in some cases because the constants 0 and 1 can be used. On
bits, the operations +, ∗, −, / are defined modulo 2 (that is, bit is the finite
field of size 2). In particular, the negation of x is written x+1 (not −x which
is equal to x).

An implicit coercion is declared so that bit can be used where nat or int are
expected.

α distr The set of distributions over α.

In our context, distributions are functions µ : α→ R≥0 with
∑

x µ(x) ≤ 1.

Expressions of this type occur on the right hand side of sample statements
(e.g., e in x <$ e;).

α ell2 Vectors in ℓ2(α).

The type is endowed with the type class complex_normed_vector, so opera-
tions such as + or norm work as expected.

Expressions of this type occur on the rhs of quantum initialization statements
(e.g., e in q <q e;).

α ccsubspace Closed subspaces of the Hilbert space α.

This type is used mostly for constructing quantum predicates, see also the type
predicate.

It is endowed with the type class complete_lattice, thus it has operations
such as ⊓ (inf) for the intersection of two spaces, ⊔ (sup) or + for the sum
of two spaces, INF x:Z. f x for the intersection of all spaces f(x) for x ∈ Z,
and ≤ for inclusion of subspaces. And top is the whole space α, and 0 and
bot both refer to the zero-space 0.

In most cases, one will use the type β ell2 ccsubspace, i.e., subspaces of the
Hilbert space ℓ2(β). For finite dimensional β, this is the same as the space Cβ ,
i.e., complex vectors of size |β|.
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mem2 The quantum part of pairs of memories. That is, if V1, V2 denote the set of all
variables with indices 1 and 2, respectively, mem2 represents TypesetV qu

1 V qu
2

.

This type is mainly used for defining the type predicate.
predicate An abbreviation for mem2 ell2 ccsubspace, that is, subspaces of

ℓ2(TypesetV qu
1 V qu

2
) = ℓ2[V qu

1 V qu
2 ].

This is the type of quantum predicates.

Expressions of this type occur in the pre- and postcondition of qRHL judg-
ments, as well as in many subgoals generated by tactics.

α⇒CL β
(α, β) cblinfun

Bounded operators B(α, β).

Expressions of this type occur in quantum operation statements, e.g., U in
“on q apply U”. In that case, U should always describe an isometry. (See the
description of quantum operation statements in Section 3.)

Expressions of this type also occur in predicates, e.g., as an argument to
quantum_equality_full or due to application of the wp tactic (implement-
ing rule QApply1).

This type will almost always be used as α′ ell2 ⇒CL β
′ ell2. (I.e., elements

of B[α, β].) This can be abbreviated as (α′, β′) l2bounded.

How to input: \fun_CL
(α, β) l2bounded Abbreviation for (α ell2, β ell2) cblinfun).

(α, β) measurement Measurements Meas(α, β).

Expressions of this type occur in measurements statements, e.g., M in “x <-
measure q with M”.

α variable Represents a program variable q with Typeq = α.

One can think of a variable of type α variable as a variable name, associated
with type α. There are no constants for creating values of type α variable.
Instead, by declaring a quantum variable using quantum var q : T; in the
tool, q1 and q2 will automatically be declared to have type T variable.13
Quantum variables are needed to specify registers when constructing predi-
cates. (See, e.g., the description of the lift constant below.)

α variables Tuples of program variables.

When q1, . . . , qn are variables of types α1 variable,. . . ,αn variable, then
their tuple (constructed with the syntax Jq1, . . . , qnK) has type (α1 × · · · ×
αn) variables.

Having such a type is necessary for specifying certain constants that operate
on lists of quantum variables (e.g., lift) in a type-safe way.

program A program.

When a program P is declared with program P := ...; or adversary P
...;, then P will have type program in Isabelle/HOL expressions. P can then
be used as an argument to the Pr[...] constant (see the table below). There
are no other uses of this type in our development.

program_state A program state. That is, an element of T+
cq [V1V2] of trace 1, where V1, V2

denote the set of all variables with indices 1 and 2, respectively.

This type is not interpreted in any way, there are no constants for constructing
program states. The only use is as an argument to the Pr[...] constant (see
the table below), to refer to an unspecified but fixed quantum state (typically
declared by ambient var rho : program_state).

13classical var x : T; also declares values of type T variable in Isabelle, but those are not needed on the user level,
they are used internally.
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Constants. The theory QRHL defines the following constants for use in expressions and predicates.
Some of those constants are defined in Isabelle/HOL, others are only axiomatized. See QRHL.thy and
the theories imported therein. Others are imported from other Isabelle libraries, most importantly
Complex_Bounded_Operators [4].

In many cases, there are several possible syntaxes for entering the same constant. We list all of
them, the first being the one Isabelle/HOL will use for printing the constant. In many cases, the syntax
contains special characters. These can be entered with an adapted TeX input method in Emacs (which
is automatically active in our ProofGeneral customization). In those cases we additionally mention the
character sequences to be entered in ProofGeneral for getting the special characters (marked “How to
input:” in the table below).

For inputting other non-ASCII symbols that are defined in Isabelle, try common LaTeX macro names
(e.g., \psi for ψ). Use \sub, \sup for sub-/superscript letters.

Name / syntax / type Meaning
Distributions

supp µ
:: α set

(for µ :: α distr)

The support suppµ of the distribution µ.

weight µ

:: real

(for µ :: α distr)

The weight of the distribution, that is
∑

x µ(x). In particular,
µ is total iff weight µ = 1.

prob µ x

:: real

(for µ :: α distr and x :: α)

The probability µ(x) of x according to distribution µ.

point_distr x

:: α distr

(for x :: α)

Probability distribution that samples x with proability 1. That
is, µ(y) = 1 if y = x and µ(y) = 0 otherwise for µ :=
point_distr x.

map_distr f µ
:: β distr

(for f :: α⇒ β and µ :: α distr)

The distribution of f(x) when x is µ-distributed. That is, ν(x) =∑
y∈f−1({x}) µ(y) for ν := map_distr f µ.

In particular, the first and second marginal of a distribution µ
on pairs are given by map_distr fst µ and map_distr snd µ,
respectively.

bind_distr µ f
:: β distr

(for µ :: α distr and
f :: α⇒ β distr)

The distribution of y if x is sampled according to µ and y accord-
ing to f(x). (Monadic bind.) That is, ν(y) =

∑
x µ(x)f(x)(y)

for ν := bind_distr f µ.

In particular, map_distr f µ =
bind_distr µ (λx. point_distr (f x)).

uniform M

:: α distr

(for M :: α set)

The uniform distribution on the set M if M is finite and non-
empty.

If M is infinite or empty, then uniform M := 0.
Pr[e : P (ρ)]

:: real

(for e :: bool
and P :: program
and ρ :: program_state)

The probability Pr[e : P (ρ)] that e = true after execution of
the program P with initial state ρ.

Here e must be an expression of type bool (and e may contain
ambient and program variables without indices).

P can be the name of a program declared using program P
:= ...; or adversary P var ...;. (But in the case of P ,
expressions that evaluate to a program are also admissible.)

The constant probability is internally used for representing
Pr[e : P (ρ)]. It should not be used directly.

Operators
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A∗

adj A
:: (β, α) cblinfun

(for A :: (α, β) cblinfun)

The adjoint A∗ of A.

A ◦cl B
cblinfun_compose A B
:: (α, γ) cblinfun

(for A :: (β, γ) cblinfun
and B :: (α, β) cblinfun)

The product AB of operators A and B.

How to input: o_CL

A ∗V ψ
cblinfun_apply A ψ
:: β

(for A :: (α, β) cblinfun
and ψ :: α)

The result Aψ of applying the operator A to the vector ψ.

How to input: *_V

A ∗S S
cblinfun_image A S
:: β ccsubspace

(for A :: (α, β) cblinfun
and S :: α ccsubspace)

The result AS = {Aψ : ψ ∈ S} of applying the operator A to
the subspace ψ.

How to input: *_S

id_cblinfun

:: (α, α) cblinfun
The identity operator id on ℓ2(α).

addState ψ
:: (β, β × α) l2bounded

(for ψ :: α ell2)

The operator mapping ϕ to ϕ ⊗ ψ. (Where ⊗ denotes a posi-
tional tensor product, not the labeled tensor product defined in
Section 2 in [16].)

unitary A

:: bool

(for A :: (α, β) cblinfun)

True iff A is unitary.

isometry A

:: bool

(for A :: (α, β) cblinfun)

True iff A is an isometry.

is_Proj A

:: bool

(for A :: (α, α) cblinfun)

True iff A is a projector.

Proj S
:: (α, α) cblinfun

(for S :: α ccsubspace)

The projector onto subspace S.

proj_classical_set S
:: (α, α) l2bounded

(for S :: α set)

The projector onto the span of |s⟩ with s ∈ S. (Equivalently∑
s∈S |s⟩⟨s|.)

hadamard,pauliX,pauliY,pauliZ
:: (bit, bit) l2bounded

Hadamard, or Pauli X, Y , Z operators, respectively.

CNOT
:: (bit× bit, bit×
bit) l2bounded

Controlled-not on two qubits (first qubit is the control)

A⊗o B
tensor_op A B
:: (α× β) l2bounded

(for A :: α l2bounded

and B :: β l2bounded)

The (positional) tensor product A⊗B of operators.

(Not the labeled one between B(V ) and B[W ] described in the
preliminaries of [16]. That is, A⊗o B ̸= B ⊗o A.)

How to input: \ox_o, \otimes\subo

comm_op

:: (α× β, β × α) l2bounded
The canonical isomorphism between ℓ2(X × Y ) and ℓ2(Y ×X).

That is, the operator mapping |x, y⟩ to |y, x⟩.
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assoc_op
::
(α×(β×γ),(α×β)×γ)l2bounded

The canonical isomorphism between ℓ2(X×(Y ×Z)) and ℓ2((X×
Y )× Z).

That is, the operator mapping |x, (y, z)⟩ to |(x, y), z⟩.

Note that in Isabelle/HOL, α × (β × γ) is the same type as
α × β × γ but not the same as (α × β) × γ. If we identify all
those types, then assoc_op is the identity operator.

Uoracle f
:: (α× β, α× β) l2bounded

(for f :: α⇒ β)

Classical function f represented as a unitary. More precisely,
Uoracle f : |(x, y)⟩ 7→ |(x, y + f(x))⟩.

(This is a useful construct when modeling, e.g., function that
can be queried in superposition by a quantum algorithm.)

The type β must have sort group_add. This guarantees that
y+f(x) is well-defined and has suitable properties (in particular,
this makes Uoracle f unitary). If β has even sort xor_group

(Abelian group with x+x = 0), then additional laws for Uoracle
will be available.

Examples of types that have these sorts are bit, int, nlist.
(The latter is defined in CryptHOL [2], but you additionally
need to import the theory QRHL.CryptHOL_Missing.)

When axiomatizing a type T, use the declare_variable_type
command in Isabelle to ensure that it has the relevant sorts.
(See Section 6.1.)

States
|x⟩
ket x

:: α ell2

(for x :: α)

The basis state |x⟩ of ℓ2(α).

That is, the states |x⟩ form an orthonormal basis of the Hilbert
space ℓ2(α) when x ranges over all values of type α.

How to input: \ket
EPR

:: (bit× bit) ell2
The state 1√

2
|00⟩+ 1√

2
|11⟩.

ψ ⊗l ϕ
tensor_ell2 ψ ϕ
:: (α× β) ell2

(for ψ :: α ell2 and ϕ :: β ell2)

The (positional) tensor product ψ ⊗ ϕ of vectors.

(Not the labeled one between ℓ2[V ] and ℓ2[W ] described in the
preliminaries of [16]. That is, ψ ⊗l ϕ ̸= ϕ⊗l ψ.)

How to input: \ox_l, \otimes\subl
Quantum variables

Jq1, . . . ,qnK
[|q1, . . . ,qn|]
:: (α1 × · · · × αn) variables

(for qi :: αi variable)

A typed tuple of quantum variables.

Constants that can be applied to several quantum variables ex-
pect a typed tuple of quantum variables because their result
type depends on the types of all involved quantum variables.

For example the Isabelle/HOL expression Jq1,q2K ≡quant Jq′
1K

expresses the quantum equality q1q2 ≡quant q′
1 and it is well-

typed iff Typeq1
× Typeq2

= Typeq′
1
. Typed quantum variables

allow Isabelle/HOL to check those type conditions.

How to input: \llbracket, \rrbracket, [|, |]
A»Q
A >> Q
lift A Q
liftOp A Q
:: (mem2, mem2) l2bounded

(for A :: (α, α) l2bounded
and Q :: α variables)

The operator A»Q := Uvars,QAU
∗
vars,Q ⊗ idV qu

1 V qu
2 \Q. (See Defi-

nition 19 in [16].)

Intuitively, » takes an operator A on ℓ2(α), and returns the
operator A»Q on ℓ2[V1V2] that corresponds to applying A on
the quantum variables Q ⊆ V1V2.

How to input: \frqq, >>
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Q ∈q S
liftSpace S Q
:: predicate

(for A :: α ccsubspace

and Q :: α variables)

The subspace Uvars,QS⊗ℓ2[V1V2 \Q]. (See Definition 19 in [16],
denoted S»Q there.)

Intuitively, » takes a subspace S of ℓ2(α), and returns the sub-
space S»Q of ℓ2[V1V2] that corresponds to the state of variables
Q being in subspace S.

The syntax Q ∈q S is inspired by the fact that intuitively, this
means the state of Q is in the space S.

How to input: \in_q
Q =q ψ
:: predicate

(for A :: α
and Q :: α variables)

Abbreviation for Q ∈q ccspan{ψ}.

Intuitively, this means that the state of Q is in the subspace
spanned by the single quantum state ψ. Or, in other words, the
state of Q is ψ, hence the notation.

How to input: =_q
distinct_qvars Q

:: bool

(for Q :: α variables)

True if the variables in the quantum variable tuple Q are all
distinct.

To automatically simplify statements of this form in an accom-
panying Isabelle theory, it is recommended to add a fact of the
form declared_qvars J. . .K to the Isabelle simplifier, see the
explanations for declared_qvars.

distinct_qvars_pred_var P Q

:: bool

(for P :: predicate
and Q :: α variables)

True iff the predicate P does not contain any of the (quantum)
variables in Q and all variables in Q are distinct.

(Formally, “P does not contain any of the variables in Q” means
that P is X-local [16] for some set of variables with X∩Q = ∅.)

To automatically simplify statements of this form in an accom-
panying Isabelle theory, it is recommended to add a fact of the
form declared_qvars J. . .K to the Isabelle simplifier, see the
explanations for declared_qvars.

distinct_qvars_op_vars A Q

:: bool

(for A :: (mem2, mem2) l2bounded
and Q :: α variables)

True iff the operator A does not operate on any of the (quantum)
variables in Q and all variables in Q are distinct.

(Formally, “A does not operate on any of the variables in Q”
means that A is X-local [16] for some set of variables with X ∩
Q = ∅.)

To automatically simplify statements of this form in an accom-
panying Isabelle theory, it is recommended to add a fact of the
form declared_qvars J. . .K to the Isabelle simplifier, see the
explanations for declared_qvars.

distinct_qvars_op_pred A P

:: bool

(for A :: (mem2, mem2) l2bounded
and P :: predicate)

True if the operator A does not operate on any of the quantum
variables occurring in the predicate P .

(Formally, this mean that if the operator A is X-local [16] and
the predicate P is Y -local [16] for some sets X,Y of quantum
variables with X ∩ Y = ∅.)

To automatically simplify statements of this form in an accom-
panying Isabelle theory, it is recommended to add a fact of the
form declared_qvars J. . .K to the Isabelle simplifier, see the
explanations for declared_qvars.
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declared_qvars Jq1, . . . ,qnK
declared_qvars [|q1, . . . ,qn|]
:: bool

(for qi :: αi variable)

Informally, indicates that all qi are quantum variables declared
in the tool.

All qi must be free Isabelle variables referring directly to quan-
tum variables (i.e., not bound variables, nor is it permitted to,
e.g., define x as an alias for q and then use x here).

Formally, this is an abbreviation for variable_name q1 =
s1 ∧ · · · ∧ variable_name qn = sn, where si is a string
literal containing the name of the variable qi. The sim-
plifier can use these statements to automatically prove
distinct_qvars Jq1, . . . ,qnK and various statements of the
form distinct_qvars_ . . . .

When reasoning in Isabelle directly (in an accompa-
nying theory), it is advisable to add the assumption
declared_qvars Jq1, . . . ,qnK (where qi are quantum variables
declared using quantum var ... in our tool) as an assumption
to lemmas that are proven in Isabelle, and to add this assump-
tion to the Isabelle simplifier. See Teleport_Terse.thy and
Teleport.thy for examples.

When invoking the simplifier from the tool via the simp tac-
tic, it is not necessary to add those assumptions because the
simp tactic already adds it automatically. In particular, am-
bient subgoals of the form declared_qvars J. . .K are solved
automatically by the simp tactic.

Subspaces & predicates
ccspan M
:: α ccsubspace

(for M :: α set)

The topologically-closed span of the states (vectors) in M .

Cla[b]
Cla[b]
classical_subspace b
:: predicate

(for b :: bool)

The predicate Cla[b] ⊆ ℓ2[V1V2].

This allows to encode predicates about classical variables within
quantum predicates.

How to input: \Cla

quantum_equality_fullA1Q1A2Q2

:: predicate

(for A1 :: (α, γ) l2bounded
and Q1 :: α variables

and A2 :: (β, γ) l2bounded
and Q2 :: β variables)

The quantum equality predicate A1Q1 ≡quant A2Q2. (Defini-
tion 27 in [16])

Q1 ≡q Q2

Q1 ==q Q2

quantum_equality Q1 Q2

Qeq[q1, . . . ,qn = q′
1, . . . ,q

′
m]

:: predicate

(for Q1 :: α variables

and Q2 :: α variables)

Quantum equality Q1 ≡quant Q2. (Definition 28 in [16])

This is an abbreviation for

quantum_equality_full id_cblinfun Q1 id_cblinfun Q2.

(That is, Isabelle/HOL internally expands this abbreviation
whenever it encounters it.)

The syntax Qeq[q1, . . . ,qn = q′
1, . . . ,q

′
m] is a convenience input

syntax for inputting Jq1, . . . ,qnK ≡q Jq′
1, . . . ,q

′
mK. The vari-

ables qi,q
′
i must have types αi, α

′
i such that α1 × · · · × αn =

α′
1 × · · · × α′

m.

How to input: \qeq
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P ÷ ψ»Q
space_div P ψ Q
:: predicate

(for P :: predicate
and ψ :: α ell2

and Q :: α variables )

The quantum predicate (P ÷ Uvars,Qψ)⊗ ℓ2[Q].

Note that the only place where ÷ appear in our qRHL rules is
in rule QInit1, where it appears in an expression of the form
(P ÷Uvars,Qψ)⊗ ℓ2[Q]. Because of this it is more convenient in
the tool to directly define this combination as a single constant
instead of breaking it down into several (more difficult to type)
building blocks.

How to input: \div, \frqq, >>
ortho S
:: α ccsubspace

(for S :: α ccsubspace)

Orthogonal complement S⊥ of S.

S ⊗S T
tensorSpace S T
:: (α× β) ell2 ccsubspace

(for S :: α ell2 ccsubspace and
T :: β ell2 ccsubspace)

The (positional) tensor product S ⊗ T of subspaces.

(Not the labeled one between ℓ2[V ] and ℓ2[W ] described in the
preliminaries of [16]. That is, S ⊗ T ̸= T ⊗ S.)

How to input: \ox_S, \otimes\subS

Measurements
binary_measurement P
:: (bit, α) measurement

(for P :: (α, α) l2bounded)

Constructs a binary measurement from the project P . (I.e.,
outcome 1 corresponds to P and outcome 0 to 1− P .)

computational_basis

:: (α, α) measurement
A projective measurement on ℓ2(α) in the computational basis.

mtotal M

:: bool

(for M :: (α, β) measurement)

True iff the measurement M is total.

mproj M x
:: (β, β) l2bounded

(for M :: (α, β) measurement
and x :: α)

The projector M(x) corresponding to outcome x of the projec-
tive measurement M .

5 Tactics
In this section, we document all tactics supported by our tool. The tactics are not in one-to-one cor-
respondence with the rules from Section 5 in [16] (for example, many tactics implement a combination
of some rule with the Seq or Conseq rule). Yet, most rules can be recovered as special cases of the
tactics. (E.g., the rule Sample1 can be implemented as the tactic sequence wp left. skip. simp.)
Some rules may not be implemented in their full generality. Rules that are not yet implemented in
the tool are: Sym, QrhlElim (but we have QrhlElimEq), While1, JointWhile, JointMeasure,
JointMeasureSimple.

In the description of the rules, we use Isabelle/HOL syntax for expressions (in particular, for pre-
and postconditions) because that is the syntax used in our tool. The reader should keep this in mind
when comparing the rules described in this section with those from Section 5 in [16]. See Section 6 for
a description of the constants used in Isabelle/HOL syntax.

Whenever we state a rule describing the operation of a tactic, the preconditions of the rule are the
subgoals created by the tactic. Any other preconditions the rule may have (i.e., conditions that the tactic
checks immediately instead of creating a subgoal) are mentioned in the text accompanying the rule.

Tactic admit
Solves the current subgoal without checking. This tactic is not sound, it can be used to prove any
theorem. It is intended for experimentation and proof development (to get a subgoal out of the way
temporarily and focus on other subgoals first).
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Tactic byqrhl
This tactic transforms a goal comparing two programs into a qRHL goal comparing the same programs.

It can be applied to goals comparing probabilities (e.g., Pr[...] <= Pr[...]) as well as to
denotational-equivalence goals.

Comparing probabilities. When invoked as “byqrhl qvars q(1), . . . ,q(m).”, transforms a goal of
the form Pr[e : P (ρ)] = Pr[e′ : P ′(ρ)] into a qRHL subgoal. (Also works for ≤ or ≥ instead of =.)

Here e, e′ must be expressions of type bool (that may contain classical and ambient variables), and
P, P ′ must be the names of programs that have been declared using the program or the adversary
command.

The tactic implements the following rule:{
Cla[y

(1)
1 = y

(1)
2 ∧ · · · ∧ y

(n)
1 = y

(n)
2 ] ⊓ Jq(1)

1 , . . . ,q
(m)
1 K ≡q Jq(1)

2 , . . . ,q
(m)
2 K

}
call P ∼∼∼ call P ′{Cla[e1 ↔ e′2]

}
Pr[e : P (ρ)] = Pr[e′ : P ′(ρ)]

with e1 := idx1 e, e
′
2 := idx2 e

′.

Here y(1), . . . ,y(n) are the free classical variables of P, P ′, e, e′. And q(1), . . . ,q(m) are required to be a
superset of the quantum variables in

(
fv(P ) \ overwr(P )

)
∪
(
fv(P ′) \ overwr(P ′)

)
. (fv(P ) are the free

variables, and overwr(P ) the overwritten variables of P .)14
If the tactic is invoked simply as byqrhl, then q(1), . . . ,q(m) will simply be the quantum variables in(

fv(P ) \ overwr(P )
)
∪
(
fv(P ′) \ overwr(P ′)

)
, i.e., the minimum allowed set of quantum variables.

If the conclusion contains ≤ or ≥ instead of =, then↔ is replaced by→ or←, respectively. If m = 0,
then Jq(1)

1 , . . . ,q
(m)
1 K ≡q Jq(1)

n , . . . ,q
(m)
n K is replaced by top.

The rule is a special case of rule QrhlElimEqNew in [15].

Denotational equivalence. When applied as

byqrhl qvars q(1), ..., q(m).

it transforms a denotational equivalence of two programs c and d into a qRHL goal.
The tactic implements the following rule:

{
A
}
c∼∼∼ d

{
A
}

JcK = JdK

with e1 := idx1 e, e
′
2 := idx2 e

′

and A := Cla[y
(1)
1 = y

(1)
2 ∧ · · · ∧ y

(n)
1 = y

(n)
2 ]

⊓ Jq(1)
1 , . . . ,q

(m)
1 K ≡q Jq(1)

2 , . . . ,q
(m)
2 K

Here y(1), . . . ,y(n) are the free classical variables of c and d. And q(1), . . . ,q(m), specified in the tactic-
invocation, are required to be a superset of the free quantum variables in c and d.

If the tactic is invoked simply as byqrhl, then q(1), . . . ,q(m) will be the free quantum variables in c
and d, i.e., the minimum allowed set of quantum variables.

If m = 0, then Jq(1)
1 , . . . ,q

(m)
1 K ≡q Jq(1)

n , . . . ,q
(m)
n K is replaced by top.

Tactic case
When invoked as “case z := e.”, it replaces the subgoal {A}c ∼∼∼ d{B} by {Cla[z = e] ⊓A}c ∼∼∼ d{B}.
The variable z must be a declared as an ambient variable that is not contained in c,d, e or in the code
of any program declared with the program command.

{Cla[z = e] ⊓A}c ∼∼∼ d{B}
{A}c ∼∼∼ d{B}

The tactic is justified by rule Case. Note that rule Case would add an additional all-quantifier ∀z
to the subgoal. However, since all ambient variables are implicitly all-quantified, the all-quantifier can
be omitted.

14Those sets are defined in [15]. The command “print P ” shows those variables.
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Tactic casesplit
When invoked as “casesplit e.” with a Boolean expression e, the current subgoal G is replaced by two
subgoals e→ G and ¬e→ G. This works for qRHL subgoals and ambient logic subgoals.

e→ G ¬e→ G

G

Tactic clear
When invoked as “clear n” for some integer n ≥ 1, it removes the n-th assumption from the current
subgoal. For qRHL subgoals, assumptions are explicitly listed and numbered in the tool. For ambient
subgoals of the form A1 → · · · → Am → B, An is considered to be the n-th assumption.

A1 → . . . An−1 → An+1 → · · · → Am → B

A1 → · · · → Am → B

Tactic conseq
When invoked as “conseq pre: C.”, it rewrites the precondition of the current qRHL subgoal to be-
come C. When invoked as “conseq post: C.”, it rewrites the postcondition of the current qRHL
subgoal to become C. C must be an Isabelle/HOL expression of type predicate.

That is, one of the following two rules is applied (left for pre, right for post):

A ≤ C {C}c ∼∼∼ d{B}
{A}c ∼∼∼ d{B}

C ≤ B {A}c∼∼∼ d{C}
{A}c ∼∼∼ d{B}

Both rules are special cases of rule Conseq.

An alternative invocation is “conseq qrhl: lemma ”. In this case, lemma has must be the name of an
already proven theorem (using the qrhl command) stating {A′}c ∼∼∼ d{B′}. Then conseq qrhl: lemma
applies the rule:

A ≤ A′ B′ ≤ B
{A}c ∼∼∼ d{B}

That is, this form can be used when the current qRHL judgment has already been proven, except with
slightly different pre-/postconditions. (But the programs need to be identical.)

This is still a special case of rule Conseq.

In many cases, already proven qRHL judgments lemma are of the form
{A ⊓ L ≡quant R}c∼∼∼ d{B ⊓ L′ ≡quant R

′} where the variables in the quantum equality are not ex-
actly the ones needed in the present subgoal. In this case, we can use the tactic “conseq qrhl
(Lold->Lnew; Rold->Rnew): lemma ”. In this form, the tactic will first attempt to rewrite the quantum
equality lemma: In both L,L′, Lold is replaced by Lnew , and in R,R′, Rold is replaced by Rnew . Then
the tactic behaves like “conseq qrhl: lemma ” above except that the rewritten lemma is used.

For the rewriting to be possible, the following conditions need to be satisfied:
• Lold is a suffix of both L,L′. Rold is a suffix of both R,R′. (Checked by the tactic.)
• (Lold ∪ Lnew ) ∩ fv(c) = ∅. (Checked by the tactic.)
• (Rold ∪Rnew ) ∩ fv(d) = ∅. (Checked by the tactic.)
• – |TypesetLnew

| =∞∨ |TypesetLnew
| ≥ |TypesetLold

|.
– |TypesetRnew

| =∞∨ |TypesetRnew
| ≥ |TypesetRold

|.
– Lold , Lnew (indexed with 1) and Rold , Rnew (indexed with 1) are disjoint from the free variables

of A,B.
(These three conditions are returned as a single subgoal, usually easy to solve using simp.)

The rewriting is justified by rule EqVarChange in [15].
If any of Lold , Lnew , Rold , Rnew should be the empty list, then the notation “.” can be used. (E.g.,

x,y->. means variables x, y are simply removed.)
When invoking “conseq qrhl (Vold->Vnew): lemma ”, this is short for “conseq qrhl (Vold->Vnew;

Vold->Vnew): lemma ”. (Same replacement on left/right side.)
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To be able to use this tactic, it is a good idea to set aside a variable aux of some infinite
type15 that never occurs in any programs, and then to always prove qRHL judgments of the form
{A ⊓ L ≡quant R}c∼∼∼ d{B ⊓ L′ ≡quant R

′} where L,R,L′, R′ all end in aux. (Intuitively, this means the
judgment in question also preserves equality of an uninvolved variable aux.) Then aux can be replaced
by other quantum variables as needed when the qRHL judgement is used in a subproof.

Tactic equal
Converts a subgoal of the form {A}c0; c∼∼∼ d0;d{B} where c,d satisfy c = d (up to few differences) into
a subgoal {A}c0 ∼∼∼ d0{D} with suitably updated postcondition D. In addition, a subgoal about free
variables, as well as subgoals corresponding to the differences between s, s′ (if any) are produced.

The simplest form is to invoke the tactic as equal, this removes the last statement on both sides,
assuming it is the same statement.

In general, the tactic is invoked as: “equal n exclude P in Vin mid Vmid out Vout.”
Here n denotes how many statements should be included in the suffix c/bd. n can be a natural

number (meaning the last n lines should be removed), the keyword all (meaning the whole left/right
program should be removed), or omitted (meaning one line should be removed).

P is a comma-separated list of program names. When the tactic identifies where c,d differ (see
below), all invocations of the programs P are included in the list of differences (even if they are the
same invocation on both sides). This can be useful if the programs in P contain variables that would
get included in the invariants generated by equal in an undesired way. (Instead, we get extra subgoals
for those programs that we need to prove manually.) “exclude P ” can be omitted.

The equal tactic works by maintaining an invariant throughout c,d that all relevant variables are
equal on the left/right side. Which variables are included in those invariants can be finetuned using the
comma-separated variable lists Vin , Vmid , Vout . Vin specifies which variables should be equal before c,d.
(I.e., Vin occurs in the updated postcondition D.) Vmid specifies which variables should be equal during
the execution of c,d (this will affect the invariants in subgoals corresponding to the differences between
c,d). Vout specifies which variables should be equal after execution of c,d (this affects how the original
postcondition B is treated, in particular, if B contains a quantum equality, then Vout should contain
exactly the quantum variables in that quantum equality).

The sets Vin , Vmid , Vout must satisfy a number of conditions. If those conditions are not satisfied,
the tactic tries to add as few variables as possible to these sets so that all conditions are met. (The
tactic also outputs a log explaining which variables are added to make which condition true.) Each of
the specifications in Vin , mid Vmid , and out Vout can be omitted. This means the tactic includes as
few variables as possible in the corresponding variable list.

In detail:
The tactic works by instantiating and applying the following rule from [15]:

Adversary
Vin , Vmid , Vout satisfy numerous conditions (see [15]) ∀i.

{
R ∩ ≡Vmid

}
si ∼∼∼ s′i

{
R ∩ ≡Vmid

}{
R ∩ ≡Vin

}
C[s1, . . . , sn]∼∼∼ C[s′1, . . . , s′n]

{
R ∩ ≡Vout

}
(Here ≡V denotes Cla[x(1)

1 = x
(1)
2 ∧ · · · ∧ x

(n)
1 = x

(n)
2 ]∩Q1 ≡quant Q2 where x(i) are the classical variables

in V and Q are the quantum variables in V , and Q1, Q2 are Q indexed with 1/2, respectively.)
By comparing c,d, a context C with multiple holes is obtained such that c = C[s1, . . . , sn] and

d = C[s′1, . . . , s
′
n].16 It is furthermore guaranteed that no program in P occurs in C. (In particular, if

c = d and P = ∅, then simply C = c = d.) We call the si, s′i pairs “mismatches”.
Next, the tactic instantiates Vin , Vmid , Vout . The tactic includes all variables given by the user (see

above) and tries to add as few variables as possible to those sets in order to satisfy the “numerous
conditions” from the Adversary rule.

Next, the tactic constructs a predicate R such that (R ∩ ≡Vout) ⊆ B. (Below we explain how R is
constructed.) The updated postcondition is then defined to be D := (R ∩ ≡Vin).

Then, by rule Adversary, together with rule Seq and rule Conseq, we can replace the subgoal
{A}c0; c∼∼∼ d0;d{B} by the following subgoals:

15Such a variable aux is predeclared by the tool.
16The definition of multi-hole contexts is given in footnote 17 in [16].
Note that in statements of the form call A(p1,...,pn), A is a context itself with p1,...,pn in its holes. So the holes

of C can also be arguments of adversaries in call-statements. (E.g., when c = call A(enc1) and d = call A(enc2), then
s1 = enc1 and s′1 = enc2.)
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• One subgoal ensuring some of the “numerous conditions”. (Those that cannot be checked by the
tactic internally.)

• One subgoal
{
R ∩ ≡Vmid

}
si ∼∼∼ s′i

{
R ∩ ≡Vmid

}
for each mismatch si, s′i.

• One subgoal {A}c0 ∼∼∼ d0{D}.
Finally, we describe how R is computed:
• During the computation of Vin , . . . , a number of variables are identified that must not occur in
R if the “numerous conditions” are to be satisfied. We write Qforbidden and Xforbidden for those
variables (the classical/quantum ones, respectively).

• Let V qu
out denote the quantum variables in Vout . Then we remove the quantum equality V qu

out,1 ≡quant

V qu
out,2 from B. That is, if B = B′ ∩

(
V qu
out,1 ≡quant V

qu
out,2

)
(up to associativity and commutativity

of ∩), we set R1 := B′. If B cannot be parsed in this way, we set R1 := B.
Obviously, R1 ∩ ≡V qu

out ⊆ B, so R1 is a candidate for the invariant R. Yet R1 may still contain
variables in Qforbidden and Xforbidden .

• If Qforbidden ∩ fv(R) ̸= ∅, the tactic fails. (The variable sets Vin , . . . are chosen above in a way
that attempts that this does not happen, but it cannot be fully excluded.)

• Next, we remove all variables in Xforbidden from R1.
The simplest approach would be to set R :=

⋂
x
(1)
1 x

(1)
2 ...x

(n)
1 x

(n)
2
R1 where {x(1) . . .x(n)} :=

Xforbidden . (Essentially requiring that R1 holds for any value of those variables.) Then we
would have that fv(R) ∩ Xforbidden = ∅. However, this approach is problematic because the
resulting R may be too strong of an invariant. E.g., if B = Cla[x

(1)
1 = x

(1)
2 ], then R would be

R =
⋂

x
(1)
1 x

(1)
2

Cla[x
(1)
1 = x

(1)
2 ] = Cla

[
∀
x
(1)
1 x

(1)
2
x
(1)
1 = x

(1)
2

]
= Cla[false].

Instead, let x̃(1) . . . x̃(m) be all the classical variables in Vout such that for each i, both x̃
(i)
1 and

x̃
(i)
2 occur in R. Let R2 := Cla

[
¬(x̃(1) = x̃(1) ∧ · · · ∧ x̃(m) = x̃(m))

]
+ R1. It is easy to verify that

R2 ∩ ≡V qu
out ⊆ R1, and thus R2 ∩ ≡V qu

out ⊆ B.
Finally, let R :=

⋂
x
(1)
1 x

(1)
2 ...x

(n)
1 x

(n)
2
R2. Then R ∩ ≡V qu

out ⊆ B and fv(R) ∩Xforbidden = ∅.

And note that if, e.g., B = Cla[x
(1)
1 = x

(1)
2 ], then R =⋂

x
(1)
1 x

(1)
2

(
Cla[¬(x(1)

1 = x
(1)
2 )] + Cla[x

(1)
1 = x

(1)
2 ]

)
=

⋂
x
(1)
1 x

(1)
2

Cla[(x
(1)
1 = x

(1)
2 ) =⇒ x

(1)
1 = x

(1)
2 ] =⋂

x
(1)
1 x

(1)
2

Cla[true] = Cla[true], avoiding the problem that the invariant becomes too strict.

Tactic fix
When invoked as “fix z.”, replaces a goal of the form ∀x. e by e{z/x}, i.e., e with occurrences of x
replaced by z. The variable z must be a declared as an ambient variable, and it must not occur free in
e or in the code of any program declared with the program command.

e{z/x}
∀x. e

This rule is justified by the fact that free ambient variables are implicitly all-quantified.

Tactic frame
When invoked as “frame.”, the tactic applies the following rule:

fv(R) ∩ V qu
cd = ∅ {A ∩R}c ∼∼∼ d{B ∩R}

{A}c ∼∼∼ d{B}

where V qu
cd are the quantum variables occurring in c,d (indexed with 1 or 2, respectively).

The tactic requires (and checks) that the written classical variables of c,d (indexed with 1 or 2,
respectively) are disjoint from fv(R).

This tactic is a direct implementation of the rule Frame.

Tactic if
The if tactic allows to replace an if-statement at the beginning of the left and/or right program by its
then- or else-branch.
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When invoked as “if left”, it applies the following rule:

{A ⊓ Cla[e1]}ctrue ∼∼∼ d{B} {A ⊓ Cla[¬e1]}cfalse ∼∼∼ d{B}
{A}if e then ctrue else cfalse ∼∼∼ d{B}

That is, it splits the if-statement into two subgoals for each of the branches. Here e1 is e with all variables
x replaced by x1.

If we know that only the then-branch will be executed anyway, we can use “if left true” which
applies the rule:

A ⊆ Cla[e1] {A ⊓ Cla[e1]}ctrue ∼∼∼ d{B}
{A}if e then ctrue else cfalse ∼∼∼ d{B}

Or if only the else-branch will be executed, we can use “if left false” which applies the rule:

A ⊆ Cla[¬e1] {A ⊓ Cla[¬e1]}cfalse ∼∼∼ d{B}
{A}if e then ctrue else cfalse ∼∼∼ d{B}

Furthermore, we can invoke the tactic as “if right”, “if right true”, or “if right false”, with
analogous behavior on the right program.

If both programs start with an if-statement, we can split both if-statements simultaneously using the
if joint tactic. If is invoked as if joint l1-r1 ...ln-rn where each li, ri is a boolean (true or false).
Each pair li-ri stands for one of the possible combinations of value the left and right conditional can take.
For example if joint true-true false-false means we claim that the left and right conditional will
be equal. Then for each of these combinations, a subgoal is added containing the corresponding then- or
else-branch in the left and right program. More precisely, the following rule is applied:

A ⊆ Cla[∃i. e1 = li ∧ f2 = ri] for each i: {A ⊓ Cla[e1 = li ∧ f2 = ri]}cli ; crest ∼∼∼ dri ;drest{B}
{A}if e then ctrue else cfalse; crest ∼∼∼ if f then dtrue else dfalse;drest{B}

Here e1 is e with all variables x replaced by x1 and f2 analogously.
Note that the expression ∃i. e1 = li∧f2 = ri in first subgoal will not be stated in this precise form but

in a logically equivalent one. (E.g., in case of the arguments true-true false-false, the expression is
written e1 = f2.)

The common case if joint true-true false-false is the default when the tactic is invoked as if
joint.

Tactic inline
When invoked as “inline P.” it replaces all occurrences of call P; in the current subgoal by the code
of P . Here P must be a program defined by program P := {...}. The current goal must be a qRHL
subgoal or a denotational equivalence.

Logically, this does not change the subgoal since call P; is just an abbreviation for the code of P .

Tactic isa
When invoked as “isa M ”, it applies the Isabelle-method M to the first subgoal. For example, isa simp
would be very similar to the builtin simp tactic. This is particularly useful to apply Isabelle methods
that have no counterpart in the qrhl-tool.

For example, a particularly useful tactic for understanding why a certain ambient subgoal cannot be
solved is to invoke isa auto. Since the auto method in Isabelle performs case distinctions, the resulting
subgoals will often make it clearer what the remaining problem is than simp does.

When invoked as “isa ! M ”, the tactic does the same thing but fails only the Isabelle method M
completely solves the first subgoal.

Tactic local
The local tactic modifies the local variable declarations in a qRHL subgoal. It comes in several forms
described below:

When invoked as local remove left: X (for some variables X) on a qRHL subgoal of the form
{A}{ local Y ; P1 }∼∼∼ P2{B}, it replaces the left program by {A}{ local (Y \X); P1 }∼∼∼ P2{B}.
Each variable v ∈ X must satisfy one of:

23



• v is not a free variable of P1, or
• v1 is not a free variable of A,B.

For classical variables, this requirement is checked by the tactic, and for quantum variables, a new subgoal
is generated for this requirement (which can almost always be solved with simp!).

Analogously with right instead of left.
When invoked as local remove left or local remove right (i.e., without explicitly specified vari-

ables) it removes as many variables as possible.
This use of the tactic is justified by the RemoveLocal1/2 rules in [15].

When invoked as local up or local up left or local up right, it moves all local variable dec-
larations in both, the left, or the right program upwards as far as possible. No additional subgoals are
created.

When invoked as local up v1, . . . , vn or local up left v1, . . . , vn or local up right v1, . . . , vn,
it moves the local variable declarations specified by v1, . . . , vn upwards as far as possible. No additional
subgoals are created. Each vi is either a variable name (in which case all occurrences of local vi are
moved upwards), or vi is of the form v : i, in which case the i-th occurrence of local v is moved upwards.

Tactic measure
When invoked as “measure.”, converts a subgoal of the form
{A} c;x < − measure Q in e ∼∼∼ c′;x′ < − measure Q′ in e′ {B} (i.e., ending in a measurement-
statement on both sides) into a subgoal {A}c ∼∼∼ c′{C} with suitably updated postcondition C.

Here e, e′ must have the same type.
The tactic implements the following rule:

{A}c∼∼∼ c′{B′}
{A} c;x <- measure Q in e ∼∼∼ c′;x′ <- measure Q′ in e′ {B}

where

B′ := Cla[e1 = e′2] ⊓ (Q1 ≡quant Q
′
2) ⊓

INF z. let ē = ((mproj e1 z)»Q1) · top; ē′ = ((mproj e′2 z)»Q
′
2) · top in(

B{z/x1, z/x
′
2} ⊓ ē ⊓ f̄

)
+ ortho ē+ ortho ē′

with
e1 := idx1 e, e′2 := idx2 e

′, Q1 := idx1Q, Q′
2 := idx2Q

′.

This rule is a consequence of rule JointMeasureSimple and rule Seq: From rule
JointMeasureSimple, we obtain {B′}x <- measure Q in e ∼∼∼ x′ <- measure Q′ in e′ {B} (The
only differences between B′ and the precondition from rule JointMeasureSimple is the use of Isabelle-
syntax here and the fact that im e replaced by the equivalent e · top.) Then with {A}c ∼∼∼ c′{B′} and
rule Seq, we get the conclusion of the rule.

Tactic o2h
This tactic allows to apply the Semiclassical O2H Theorem from [1] (Theorem 1, variant (1)). We refer
to [1] for details about the O2H Theorem. To apply the O2H Theorem in qrhl-tool, we have the tactic
o2h. As a precondition for applying this tactic, the games listed in Figure 2 must be defined. The games
must be defined exactly as written there, except that the names of the games, as well as the names of
the variables (IN, OUT, G, S, H, z, in_S, found, count) may be chosen arbitrarily. And distr can be
an arbitrary constant expression (meaning, the expression must not contain any program variables but
may contain ambient variables). Furthermore, we require that the type of the oracle outputs (i.e., β if G
has type α⇒ β) is of type class xor_group,17 otherwise Uoracle does not have the required behavior.

That is, queryG and queryH are implementations of the oracles that perform superposition queries to
the functions G and H (using input/output registers IN, OUT). Count is a wrapper oracle that counts
oracle queries (to express the bound on the number of queries performed by A). Let the programs left,

17This specifies an Abelian group with x+ x = 0.
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1 program queryG := {
2 on IN, OUT apply (Uoracle G);
3 }.
4

5 program queryGS := {
6 in_S <- measure IN with binary_measurement (proj_classical_set S);
7 if (in_S =1) then found <- True; else skip;
8 call queryG;
9 }.

10

11 program queryH := {
12 on IN, OUT apply (Uoracle H);
13 }.
14

15 program Count(O) := {
16 call O;
17 count <- count + 1;
18 }.
19

20 program left := {
21 count <- 0;
22 (S,G,H,z) <$ distr;
23 { local vars; call A(Count(queryG)); }
24 }.
25

26 program right := {
27 count <- 0;
28 (S,G,H,z) <$ distr;
29 { local vars; call A(Count(queryH)); }
30 }.
31

32 program find := {
33 count <- 0;
34 (S,G,H,z) <$ distr;
35 found <- False;
36 { local vars; call A(Count(queryGS)); }
37 }.

Figure 2: Games required by o2h tactic. The local variable declaration local vars can be omitted (but then must be
omitted in all games).

right are just the programs defined in Pleft , Pright in the O2H Theorem (see [1]). (Except that we addi-
tionally added a counter count that explicitly counts the oracle queries.) Finally, queryGS implements
the “punctured oracle” G \ S and stores in the variable found whether a value in S was queried. (A
punctured oracle is one that allows superposition queries but measures whether the input register con-
tains a value in S. In the definition of that program, “binary_measurement (proj_classical_set S)”
constructs the binary measurement that checks this.) Thus the game find corresponds to Pfind in the
O2H Theorem.

Since the games have to be in this precise form, the first step before applying the tactic o2h will
typically be to rewrite the games of interest in this specific form (for a suitably defined distribution
distr) and show that the original and rewritten game have the same probability of b = 1.

The tactic o2h can then be applied to proof goals of the exact form:

abs ( Pr[b=1 : left(rho)] - Pr[b=1 : right(rho)] )
<= 2 * sqrt( (1+ real q) * Pr[found : find(rho)] )

where left and right are the games from Figure 2 and q is an expression (of type nat).
When applying the tactic o2h (without any additional arguments), it checks whether all involved

games have the right form and that none of the variables count,found,G,H,S,in_S are in the free
variables of A (but A is allowed to access IN,OUT,b,z). If these checks succeeds, the tactic produces
four subgoals:
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1 Pr[count ≤ q : left(rho)] = 1
2 Pr[count ≤ q : right(rho)] = 1
3 Pr[count ≤ q : find(rho)] = 1
4 ∀S G H z x. (S,G,H,z) ∈ supp distr → x /∈ S → G x = H x

The first three of them express the requirement that A makes at most q oracle queries (recall that
count counts the oracle queries because of the wrapper oracle Count). And the fourth one expresses the
fact that ∀x /∈ S,G(x) = H(x) when S,G,H are chosen according to distr. (This is one of the premises
of the O2H Theorem.)

Note that the program find contains a punctured oracle queryGS. To transform find into a game
with normal oracles (such as queryG), see the tactic semiclassical.

Tactic rename
When invoked as rename left: σ or rename right: σ or rename both: σ, renames free variables in
the left/right/both programs according to the substitution σ. σ must be specified as a sequence of
mappings of the form a->b, c->d, e->f, ....

Assume the current subgoal is {A}c ∼∼∼ d{B}.

For the tactic to be applicable, the following conditions must be satisfied:
• The variables in the domain D of the substitution (i.e., a,c,e,...) have to be distinct.
• The variables in the range R of the substitution (i.e., a,c,e,...) have to be distinct.
• For each mapping a->b in the substitution, the variables must have the same type, and must be

both classical or both quantum.
• Applying σ to the left/right/both programs must no lead to a collision between local and renamed

free variables. (Formally, noconflict(σ, c) and/or noconflict(σ,d) must hold where noconflict is
defined in [15].)

• R \D ∩ (fv(c) ∪ VA1 ∪ VB1) = ∅ where VA1 := {x : x1 ∈ fv(A)} and VB1 := {x : x1 ∈ fv(B)} (free
variables of A,B with index 1 removed). (Only in cases left and both.)

• R \D ∩ (fv(d) ∪ VA2 ∪ VB2) = ∅ where VA2 := {x : x2 ∈ fv(A)} and VB2 := {x : x2 ∈ fv(B)} (free
variables of A,B with index 2 removed). (Only in cases right and both.)

• Rqu ∩ (VA1 ∪ VB1) = ∅ in cases left and both, and Rqu ∩ (VA2 ∪ VB2) = ∅ in cases right and
both. (Here Rqu are the quantum variables in R.)18

• Renaming cσ and/or dσ (depending on left/right/both) must be possible without renaming a
variable inside a declared program (included via a call-statement).19

The tactic creates one or two subgoals:
• A subgoal that checks some of the above variable conditions. (This subgoal may be missing if the

tactic can check everything internally.)
• {Aσ1}cσ ∼∼∼ d{Bσ1} or {Aσ2}c ∼∼∼ dσ{Bσ2} or {Aσ1σ2}cσ ∼∼∼ dσ{Bσ1σ2} (in cases left, right,
both).
Here σ1, σ2 are the substitutions that rename the 1-indexed/2-indexed variables according to sigma.
(I.e., σ1 renames a1->b1, c1->d1, e1->f1, ... and σ2 renames a2->b2, c2->d2, e2->f2,
...)

The tactic is justified by rule RenameQrhl1/2 in [15].

Tactic rewrite
This tactic allows to replace a sequence of lines in the left or right program by different code. A new
subgoal stating the denotational equivalence between those lines and the replacement code is produced.

The tactic is invoked on a qRHL goal or a denotational-equivalence goal as:

rewrite left/right n–m -> replacement.

Here we use left or right to indicate whether we want to rewrite the left or the right program. This
tactic will replace lines n–m in that program by the code specified by replacement. And replacement can
be any of:

18This condition is not required by rule RenameQrhl1/2. However, the tactic requires it because of the way how the
renaming of quantum variables is computed internally.

19This condition is not required by rule RenameQrhl1/2. However, if it is not satisfied, the result of renaming cannot
be expressed without renaming the declared programs.
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• left/right i–j: The content of lines i–j from the left/right program, respectively.

• { code }: Replace by the explicitly specified code code (given in the syntax from Section 3).

For example:

rewrite left 2-3 -> right 2-2.

will replace lines 2,3 in the left program by whatever line 2 in the right program is. And

rewrite right 2-3 -> { call P; }.

will replace lines 2,3 in the right program by a call to P.
The tactic produces two subgoals:

• A denotational equivalence between the content of the selected lines and the replacement.

• The original subgoal with the lines replaced.

Note: Currently it is only possible to replace lines on the toplevel of the program. E.g., it is not
possible to replace, say, lines inside a branch of an if-statement.

Example file. An example of this tactic in use is given in the example file examples/rewrite.qrhl.

Tactic rnd
Converts a subgoal of the form {A} c;x <$ e ∼∼∼ c′;x′ <$ e′ {B} (i.e., ending in a sampling on both sides)
into a subgoal {A}c∼∼∼ c′{C} with suitably updated postcondition C.

Specifically, if invoked as “rnd.”, the new postcondition will be C := Cla[e1 = e′2] ⊓ (INF z ∈
supp e1. B

′) where e1 := idx1 e (all free classical variables in e indexed with 1), and e′2 := idx2 e (all
free classical variables in e′ indexed with 2), and B′ := B{z/x1, z/x

′
2} (i.e., all occurrences of x1 and x2

replaced by a fresh variable z).
Informally, C requires that e and e′ are the same distribution, and B holds for any x1 = x′

2 in the
support of e. That is, the syntax “rnd.” is to be used in the common case when both programs end with
the same sampling, and we want the two samplings to be “in sync”, i.e., to return the same value.

The variables x and x′ must have the same type in this case.
That is, “rnd.” implements the following rule:{
A
}
c∼∼∼ c′

{
Cla[e1 = e′2] ⊓

(
INF z ∈ supp e1. B{z/x1, z/x

′
2}
)}

{A} c;x <$ e ∼∼∼ c′;x′ <$ e′ {B}
where e1 := idx1 e, e

′
2 := idx2 e

′

This rule is a consequence of rule JointSample and rule Seq: From rule JointSample (with f :=
map_distr (λz. (z, z)) e1 and some simplifying), we get

{Cla[e1 = e′2] ⊓
(
INF z ∈ supp e1. B{z/x1, z/x

′
2}
)
}x <$ e ∼∼∼ x′ <$ e′{B}.

With rule Seq, the conclusion of the rule follows.

The second way of invoking the tactic is “rnd x,x′ <- f.” Here x,x′ must be the same variables as
in the sampling statements in the subgoal.

In this case, the new subgoal will be {A}c ∼∼∼ c′{C} with

C := Cla[map_distr fst f = e1 ∧ map_distr snd f = e′2] ⊓
(
INF (x1,x

′
2) ∈ supp f. B

)
where e1 := idx1 e (all variables in e indexed with 1), and e′2 := idx2 e

′ (all variables in e′ indexed with 2).
Informally, C says f has marginals e and e′, and the postcondition B holds for any possible x1,x

′
2 in

the support of f . This variant is used if the variables x,x′ in the two programs are sampled according to
potentially different distributions, and we want to establish a specific relationship between those variables
after sampling (the relationship is encoded in the choice of f).

That is, the tactic “rnd x,x′ <- f.” implements the following rule:{
A
}
c ∼∼∼ c′

{
Cla[map_distr fst f = e1 ∧ map_distr snd f = e′2] ⊓

(
INF (x1,x

′
2) ∈ supp f. B

)}
{A} c;x <$ e ∼∼∼ c′;x′ <$ e′ {B}
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where e1 := idx1 e, e
′
2 := idx2 e

′

The rule is an immediate consequence of rule JointSample and rule Seq.

Readers familiar with EasyCrypt may notice that their rnd-tactic takes very different arguments.
Namely, in EasyCrypt, one can invoke the tactic as rnd F G where F and G are isomorphisms be-
tween the distributions e1, e′2. The EasyCrypt behavior can be recovered in our tool by invoking rnd
x,x′ <- map_distr (λz. (z, F z)) e1. (Instead of the condition that F is an isomorphism between the
distributions, our tactic will have the equation map_distr snd map_distr (λz. (z, F z)) e1 = e′2 in the
resulting precondition, which follows from the fact that F is an isomorphism.) Our tactic is more general
though, since we can also handle the case where the distributions are not isomorphic. For example,
we can show the judgment {top}x <$ d;∼∼∼ x <$ map_distr (λz. z ∗ z) d;{Cla[x1 ∗ x1 = x2]} (see the
contributed file rnd.qrhl20) which does not seem easily possible in EasyCrypt.

Tactic rule
When invoked as “rule l” on an ambient subgoal, it applies the rule l to the current subgoal. That is, l
is assumed to be the name of an Isabelle lemma of the form A1 =⇒ · · · =⇒ An =⇒ B, where B matches
the current goal (i.e., Bσ is the current goal for some substitution σ). The current goal is then replaced
by goals A1σ, . . . , Anσ.

This tactic is particularly useful for delegating subproofs to Isabelle/HOL. For example, if the current
subgoal is an inequality of predicates that the simp-tactic cannot solve, then the subgoal can be copied to
the accompanying Isabelle/HOL theory and proven there as a lemma l (possibly with some preconditions
of the form distinct_qvars Jq1, . . . ,qnK that will then become new subgoals in the tool and can be
resolved using the simp-tactic).

l can be any specification of a lemma that Isabelle understands. That is, we can also write, e.g., f(3)
for the third part of the fact f , or f [where x = 1] to instantiate x with 1 in f , etc.

Tactic semiclassical
The tactic o2h above introduces games that contain “punctured oracles”, i.e., oracles that allow super-
position queries to a function but measure whether the input is in a given set S. At some point, it is
usually necessary to get rid of the punctured oracle. Theorem 2 in [1] gives a method to do so. The tactic
semiclassical (invoked without any arguments) implements that theorem. This tactic requires that
games of the exact form as in Figure 3 are defined. (The names of the games, as well as the variables
(IN, OUT, G, S, H, z, in_S, found, count, stop_at, guess) can be arbitrary, and the output type of G
must be of type class xor_group. distr and q are arbitrary constant expressions.) See the description
of the tactic o2h for programs queryG, queryGS, Count. The program queryGM is an oracle that first
checks whether the number of the current oracle query is stop_at before querying G. If so, the input to
G is measured in the computational basis and stored in guess. This corresponds to the query performed
by the adversary B in Theorem 2in [1]. (Where stop_at is i in B.) And finally, the game left is like
the find game in tactic o2h.

Then the tactic semiclassical, invoked without any arguments, expects a subgoal of the form:

1 Pr[found : left(rho)]
2 <= 4 * real q * Pr[guess∈S : right(rho)]

It checks whether all games are as in Figure 3 and whether the free variables of A contain none of
G, S, H, in\_S, found, count, stop\_at, guess (but A may access IN, OUT, z, b). If so, the
tactic produces the following new subgoals:

1 Pr[count ≤ q : left(rho)] = 1
2 Pr[count ≤ q : right(rho)] = 1

Here q is the same expression as in the definition of program queryGM and right. These subgoals
express the fact that the adversary makes at most q oracle queries.

20https://raw.githubusercontent.com/dominique-unruh/qrhl-tool/master/rnd.qrhl, and bundled with the tool.
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1 program queryG := {
2 on IN, OUT apply (Uoracle G);
3 }.
4

5 program queryGS := {
6 in_S <- measure IN with binary_measurement (proj_classical_set S);
7 if (in_S =1) then found <- True; else skip;
8 call queryG;
9 }.

10

11 program queryGM := {
12 if (count=stop_at) then
13 guess <- measure IN with computational_basis;
14 else
15 skip;
16

17 call queryG;
18 }.
19

20 program Count(O) := {
21 call O;
22 count <- count + 1;
23 }.
24

25 program left := {
26 count <- 0;
27 (S,G,z) <$ distr;
28 found <- False;
29 { local vars; call A(Count(queryGS)); }
30 }.
31

32

33 program right := {
34 count <- 0;
35 stop_at <$ uniform {..<q};
36 (S,G,z) <$ distr;
37 { local vars; call A(Count(queryGM)); }
38 }.

Figure 3: Games required by semiclassical tactic. The local variable declaration local vars can be omitted (but then
must be omitted in all games).

Tactic seq
When invoked as “seq i j: C”, the tactic applies the rule

{A}s1; . . . ; si ∼∼∼ s′1; . . . ; sj{C} {C}si+1; . . . ; sn ∼∼∼ s′j+1; . . . ; sm{B}
{A}s1; . . . ; sn ∼∼∼ s′1; . . . ; s′m{B}

That is, it splits off the first i statements on the left and the first j statements on the right of the current
qRHL subgoal, and uses the argument C as the invariant to use in the middle.

If-statements count as single statements, even if their bodies contain multiple statements.
The rule is an immediate consequence of rule Seq.

Tactic simp
When invoked as “simp l1 ... ln.”, it runs the Isabelle/HOL simplifier on the current goal, resulting
in one or zero subgoals.

More precisely, if the current goal is an ambient logic statement, the simplifier is applied directly. If
the current goal is a qRHL judgment, the simplifier is applied to the precondition, the postcondition,
and all assumptions (i.e., to all Pi if the current goal is P1 =⇒ · · · =⇒ Pn =⇒ {A}c ∼∼∼ d{B}).

29



If the result is a trivial statement, the subgoal is removed. (Trivial statements are: True, qRHL
judgments where one assumption is False, and qRHL judgments where the precondition is bot.)

The arguments l1, . . . , ln refer to names of Isabelle/HOL theorems. These are passed to the simplifier
as additional simplification rules. They can either refer to theorems shown in Isabelle/HOL (e.g., in
the theories included in Isabelle/HOL, in QRHL.thy, or in the accompanying theory loaded using the
isabelle TheoryName. command), or to lemmas proven within the current proof script (when the goal
was stated using lemma li: ...). These arguments are optional, the most common form of invoking the
tactic is simply simp.

When invoked as “simp ! l1 ... ln.”, the tactic behaves the same but fails unless the subgoal is
solved and removed.

Tactic skip
Converts a qRHL subgoal {A}skip ∼∼∼ skip{B} into an ambient logic subgoal.

A ≤ B
{A}skip ∼∼∼ skip{B}

This rule is an immediate consequence of rules Skip and Conseq.

Tactic sp
Removes the first statement(s) from the left or right program of a qRHL subgoal and adapts the precon-
dition accordingly.

Compared with the wp tactic, there are four important differences:

• sp processes the first line(s) of code, not the last line(s).

• sp is less complete than wp, there are program fragments for which not precondition does not
exist.21

• sp can produce simpler predicates (especially when measurements or quantum initializations are
involved).

• sp may produce additional verification conditions are separate subgoals while wp always returns
exactly one subgoal.

More precisely, when invoked as “sp left.” or “sp right.”, it applies the rule

sp-conds {sp1(A, s1)}s2; . . . ; sn ∼∼∼ c{B}
{A}s1; . . . ; sn−1; sn ∼∼∼ c{B}

or
sp-conds {sp2(A, s1)}c ∼∼∼ s2; . . . ; sn{B}

{A}c ∼∼∼ s1; . . . ; sn−1; sn{B}
(1)

respectively. (If-statements count as single statements, even if their bodies contain multiple statements.)
Here the sp1 is the recursively defined partial function defined below, and sp-conds is a list of new
subgoals, one for each of the conditions specified in the definition of sp1 or sp2 below.

sp1(A, x <- e) := SUP z. Cla[x1 = e1{z/x1}] ⊓A{z/x1}
Condition: x are distinct variables

sp1(A, x <$ e) := SUP z. Cla[x1 ∈ supp e1{z/x1}] ⊓A{z/x1}
Conditions: x are distinct variables

A ≤ Cla[weight e1 = 1]

sp1(A, on q apply e) := (e1»JqK) ·A
Conditions: q are distinct variables

A ≤ Cla[unitary e1]

sp1(A, x <- measure q with e) := SUP z r. Cla[x1 = r] ⊓
(
(mproj e1{z/x1})»q1 ·A{z/x1}

)
21E.g., there exists no predicate B (not even A := Cla[true]) such that {Cla[true]}halt∼∼∼ skip{A} holds where halt is

a nonterminating program.
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Conditions: x,q are distinct variables
A ≤ Cla[mtotal e1]

sp1(A, q <q e) := A ⊓ (q1 =q e)

Conditions: q are distinct from quantum vars in A
A ≤ Cla[∥e1∥ = 1]

sp1(A, if (e) then c else d) := sp1
(
Cla[e1] ⊓A, c

)
⊔ sp1

(
Cla[¬e1] ⊓A,d

)
Conditions: from the recursive sp1 calls

sp1(A, s1; . . . ; sn) := sp1(sp1(. . . sp1(sp1(B, s1), s2) . . . , sn−1), sn)

Conditions: from the recursive sp1 calls

Here we write e1 for idx1 e everywhere. Note that the function sp1 is undefined if the argument contains
a call-statement. In those cases, the tactic will fail.

The function sp2 is defined analogously, except that all variables and expressions get index 2 instead
of index 1.

The functions sp1 and sp2 satisfy {A}c ∼∼∼ skip{sp1(A, c)} and {A}skip ∼∼∼ c{sp2(A, c)}, respectively.
Note that we call this tactic sp like “strongest postcondition”. However, we stress that we have not

actually proven that the postconditions returned by sp1 or sp2 are indeed the strongest postconditions.
(We have merely tried to make them as strong as possible.)

sp left and sp right apply only to the very last statement. The following variants can be used to
handle several statements in one go: sp left n with n ≥ 0 is equivalent to n invocations of sp left.
Analogously sp right n. And sp n m is equivalent to sp left n. sp right n.

Tactic squash
When invoked as squash left (or squash right) on a qRHL subgoal or denotational equivalence sub-
goal, it replaces the last two statements c1; c2 in the left (or right) subgoal by a single statement c′ with
the same effect. This works only for specific combinations of last two statements; in other cases, the
tactic fails.

This tactic is useful, e.g., when we want to use the rnd tactic but in one program variables x and y
are sampled in two separate statements while on the other side they are sampled simultaneously using a
joint distribution. Then we can join the two statements in the first program using squash before using
rnd.

The following combinations of c1, c2 are supported. Here X,Y are tuples of classical variables, Q,R
are tuples of quantum variables, d, e are expressions. And e′ z := e{z/X}.

• c1 = X
$← d and c2 = Y

$← e:
Then c′ = (X,Y )

$← bind_distr d (λz. map_distr (λy. (z, y)) (e′ z)).
• c1 = X ← d and c2 = Y

$← e:
Then c′ = (X,Y )

$← bind_distr (point_distr d) (λz. map_distr (λy. (z, y)) (e′ z)).
• c1 = X

$← d and c2 = Y ← e: Then c′ = (X,Y )
$← map_distr (λy. (y, e y)) (e′ z).

• c1 = X ← d and c2 = Y ← e: Then c′ = (X,Y )← (d, e′d).
• c1 = apply d to Q, c2 = apply e to R. Then c′ = apply S to f for S containing the variables

from Q and R, and f being a suitable expression computing a unitary. There must be no repeated
variables in Q, nor in R (but Q and R may share variables).

• c1 = Q
q← d, c2 = apply e to R. Then c′ = apply Q to f for f being a suitable expression

computing a state. There must be no repeated variables in Q, nor in R. And the variables in R
must be a subset of those in Q.

Tactic swap
When invoked as swap left range1 range2 (or swap right range1 range2 ) on a qRHL subgoal, it
swaps the lines range1 with the lines range2 in the left (or right) program. Here range1 and range2 are
both of the form “a–b”. (Meaning lines a till b). The two ranges must be consecutive but can be given
in any order. (E.g., 3-4 5-7 or 5-7 3-4 but not 3-4 6-7.)

Example:
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swap left 1-2 3-3.

moves the third line of the left program in front of the first two lines.

The tactic can only be applied if the following condition is satisfied: Let c denote the program
fragment referenced by range1 , and d the program fragment referenced by range2 .

• The (free) quantum variables of c and d must be disjoint.

• The written classical variables22 of c must be disjoint from the classical variables of d.

• The written classical variables of d must be disjoint from the classical variables of c.

These conditions are checked automatically and produce no further subgoals.

Excluding subprograms. Sometimes, the variable disjointness conditions are too stringent. For
example, the block c (specified by range1 ) could have a single line e1 of code that does have a shared
quantum variable with the block d (specified by range2 ). In that case, we cannot swap c and d using
the syntax above, but we might be able to do so if we prove by hand that e1 and d commute. (E.g., if
e1 and d are both very simple, then this might be doable with elementary tactics.)

This use case is facilitated by the following syntax:

swap left/right range1 range2 subprograms: { e1 }, ..., { em }.

Here e1 to em are program fragments (in the syntax from Section 3) of the block c (selected by range1 )
that should be excluded from the variable disjointness conditions.23 An additional subgoal will be
generated for each ei, stating the denotational equivalence of ei;d and d; ei. These subgoals will come
before the rewritten original subgoal.

Note: The byqrhl tactic can be used to prove the resulting denotational-equivalence subgoals.

For example: Say the right program of the current qRHL subgoal is x <- x + 1; call A(P);. Then
we can do:

swap right 2-2 1-1 subprograms: { call P; }.

This will swap the two statements, and exclude the program call to P in call A(P) from the requirement
to not contain the variable x. We then get a subgoal claiming that x <- x + 1; call P; and call P;
x <- x + 1; are denotationally equivalent. This may be much easier to prove than the original goal,
depending on the definition of P.

Note: We gave the range 2-2 before the range 1-1 in the command. (I.e., swap right 2-2 1-1 ...,
not swap right 1-1 2-2 ....) For the basic form of the swap tactic, the order does not matter, but
in the present case it does: The subprograms ei are only searched for in range1 (i.e., in block c), not in
range2 .

The precise operation of the tactic is: Let c and d denote the code fragments selected by range1 and
range2 , respectively. Then the tactic parses c as c =: C[e1, . . . , em] where C is a multi-hole context.
Then the requirements are:

• The free quantum variables of C and d must be disjoint.

• The written classical variables of C must be disjoint from the classical variables of d.

• The written classical variables of d must be disjoint from the classical variables of C.

• The inner variables24 of C must be disjoint from the free variables of d.

(If these are not satisfied, the tactic will give an error explaining which condition was violated.)
The resulting subgoals are then:

• If range1 comes before range2 in the program:
22Written classical variables are those on the lhs of an assign/sample/measurement statement that are not hidden under

a local statement.
23A current limitation: ei will be found only if it is a single statement or a complete block in the first block. I.e., if

ei = x;y, it is found if the left program is x;y, or if the left program is if (...) x;y else ..., but not if the left
program is x;y;z.

24That is, local variables of C that have a hole of C in their scope.
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– For each i = 1, . . . , n: Denotational equivalence of ei;d and d; ei.

– The original subgoal with c;d replaced by d; c.

• If range2 comes before range1 in the program:

– For each i = 1, . . . , n: Denotational equivalence of d; ei and ei;d.

– The original subgoal with d; c replaced by c;d.

Changing subprograms. In some cases, the extended form of swap above is still not sufficient. It
might be that ei and d do not actually commute, but moving d past ei is still meaningful.

For example, consider the following program:

x <- x + 1; call A(P); (∗)

Here A does not use x, and P := { y <- 2 * x; }. We cannot just swap x <- x + 1 and call A(P)
because x <- x + 1 and call P do not commute. However, we can swap x <- x + 1 and call A(P)
if we replace P by P’ := { y <- 2 * (x + 1) } after swapping. That is, we can rewrite program (∗)
into call A(P’); x <- x + 1;, and all we need to prove is that x <- x + 1; call P; and call P’;
x <- x + 1; are denotationally equivalent (which is easy given the definitions of P and P’).

This can be achieved by using an even more general form of the swap tactic. In this specific example
(assuming that (∗) is the left hand side of a qRHL judgment), we can write:

swap left 2-2 1-1 subprograms: { call P; } -> { call P’; }.

Then we get two subgoals: the denotational equivalence of x <- x + 1; call P; and call P’; x <-
x + 1;, and the rewritten qRHL judgment.

This form is particularly useful in the quantum setting if, e.g., d is a basis transform on a quantum
variable q, and some subprogram ei of c accesses q. Then we have to replace ei by e′i which accesses q
in a basis-transformed way.

Note: The byqrhl tactic can be used to prove denotational-equivalence subgoals.

More precisely, in its most general form, the swap tactic is invoked as follows:

swap left/right range1 range2
subprograms: { e1 } -> { e′

1 }, ..., { em } -> { e′
m }.

Each of the “-> { e′i }” is optional. If it is ommitted, e′i := ei is used.
Let c and d denote the code fragments selected by range1 and range2 , respectively. The tactic parses

c as c =: C[e1, . . . , em] where C is a multi-hole context. Then the requirements are:

• The free quantum variables of C and d must be disjoint.

• The written classical variables of C must be disjoint from the classical variables of d.

• The written classical variables of d must be disjoint from the classical variables of C.

• The inner variables25 of C must be disjoint from the free variables of d.

(If these are not satisfied, the tactic will give an error explaining which condition was violated.)
The resulting subgoals are then:

• If range1 comes before range2 in the program:

– For each i = 1, . . . , n: Denotational equivalence of ei;d and d; e′i.

– The original subgoal with c;d replaced by d;C[e′1, . . . , em].

• If range2 comes before range1 in the program:

– For each i = 1, . . . , n: Denotational equivalence of d; ei and e′i;d.

– The original subgoal with d; c replaced by C[e′1, . . . , em];d.
25That is, local variables of C that have a hole of C in their scope.
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Example file. An example of this tactic in use is given in the example file examples/focus.qrhl. It
shows how a basis transform of a quantum variable can be moved past an adversary invoking an oracle
accessing that variable.

Tactic wp
Removes the last statement(s) from the left or right program of a qRHL subgoal and adapts the post-
condition accordingly.

More precisely, when invoked as “wp left.” or “wp right.”, it applies the rule

{A}s1; . . . ; sn−1 ∼∼∼ c{wp1(B, sn)}
{A}s1; . . . ; sn−1; sn ∼∼∼ c{B}

or
{A}c ∼∼∼ s1; . . . ; sn−1{wp2(B, sn)}
{A}c ∼∼∼ s1; . . . ; sn−1; sn{B}

(2)

respectively. (If-statements count as single statements, even if their bodies contain multiple statements.)
Here the wp1 is the following recursively defined partial function:

wp1(B, x <- e) := B{e1/x1}
wp1(B, x <$ e) := Cla[weight e1 = 1] ⊓ (INF x1 ∈ supp e1. B)

wp1(B, on q(1), . . . ,q(n) apply e) := Cla[isometry e1] ⊓
(
ē ∗ · (B ⊓ ē · top)

)
where ē := e1»Jq(1)

1 , . . . ,q
(n)
1 K

wp1(B, x <- measure q(1), . . . ,q(n) with e) := Cla[mtotal e1] ⊓
(
INF z.

(
(B{z/x1} ⊓ ē) + ortho ē

))
where ē :=

(
(mproj e1 z)»Jq(1)

1 , . . . ,q
(n)
1 K

)
· top

wp1(B, q
(1), . . . ,q(n) <q e) := Cla[norm e1 = 1] ⊓B ÷ e1»Jq(1)

1 , . . . ,q
(n)
1 K

wp1(B, if (e) then c else d) :=
(
Cla[¬e1] + wp1(B, c)

)
⊓
(
Cla[e1] + wp1(B,d)

)
wp1(B, s1; . . . ; sn) := wp1(wp1(. . .wp1(wp1(B, sn), sn−1) . . . , s2), s1)

Here we write e1 for idx1 e everywhere. Note that the function wp1 is undefined if the argument contains
a call-statement. In those cases, the tactic will fail.

The function wp2 is defined analogously, except that all variables and expressions get index 2 instead
of index 1.

The functions wp1 and wp2 satisfy {wp1(B, c)}c∼∼∼ skip{B} and {wp2(B, c)}skip ∼∼∼ c{B}, respec-
tively. This can be seen by induction over the structure of c, and using the rules Assign1, Sample1,
QApply1,26 Measure1, QInit1,27 If1, Conseq, and Seq. From this, the rules in (2) follow with rule
Seq.

Note that we call this tactic wp like “weakest precondition”. However, we stress that we have not
actually proven that the precondition returned by wp1 or wp2 is indeed the weakest precondition. (We
have merely tried to make them as weak as possible.)

wp left and wp right apply only to the very last statement. The following variants can be used to
handle several statements in one go: wp left n with n ≥ 0 is equivalent to n invocations of wp left.
Analogously wp right n. And wp n m is equivalent to wp left n. wp right n.

26Note that rule QApply1 does not contain the term Cla[isometry e1] that wp1(B, on q(1), . . . ,q(n) apply e) con-
tains. The reason why wp1(. . . ) includes this additional term is that on q(1), . . . ,q(n) apply e actually translates to
apply mkIso(e) to q1, . . . , qn (see footnote 12). Applying rule QApply1 to this program gives the precondition

ê ∗ · (B ⊓ ê · top) where ê := mkIso(idx1 e)»Jq(1)
1 , . . . ,q

(n)
1 K

which is a superset of

Cla[isometry e1] ⊓ ē ∗ · (B ⊓ ē · top) where ē := e1»Jq(1)
1 , . . . ,q

(n)
1 K and e1 := idx1 e.

27Note that rule QInit1 does not contain the term Cla[norm e1 = 1] that wp1(B, q(1), . . . ,q(n) <q e) contains. The
reason why wp1(. . . ) includes this additional term is that q(1), . . . ,q(n) <q e actually translates to q1, . . . ,qn

q← mkUnit(e)
(see footnote 11). Applying rule QInit1 to this program gives the precondition

B ÷ ê»Jq(1)
1 , . . . ,q

(n)
1 K where ê := mkUnit(idx1 e)

which is a superset of
Cla[norm e1 = 1] ⊓B ÷ e1»Jq(1)

1 , . . . ,q
(n)
1 K where e1 := idx1 e.
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6 Accompanying Isabelle theories
A proof script for our tool can load an accompanying Isabelle/HOL theory (using the isabelle com-
mand). In this theory, arbitrary Isabelle/HOL developments are possible. In particular, one can define
new types and constants for use in programs (e.g., the encryption scheme in Section 7.1), and one can
prove arbitrary helper lemmas as long as they do not involve qRHL judgments. (Typically, one will prove
lemmas about predicates. See also the print goal command, page 7 for a simple way to generate the
statements of lemmas for solving subgoals.)

It is beyond the scope of this paper to introduce proofs in Isabelle/HOL, see the tutorial [8] and the
reference manual [22] for more information. The theory QRHL (imported using imports QRHL.QRHL in
Isabelle) provides numerous definitions (most of them listed in Section 4) and axioms/lemmas. Many
of the lemmas are declared as simplification rules, but some of them are for direct use only. We do
not provide a comprehensive list here. To find useful facts, use the find_theorems command [22] /
query panel [20] in Isabelle. Or try the sledgehammer command [22] / sledgehammer panel [20] for
proving simple lemmas. The following axioms/lemmas correspond to facts proven in [16] (all other
axioms/lemmas are well-known or obvious facts):

Isabelle lemma Lemma in [16]
leq_space_div simp Lemma 21
classical_inf simp Lemma 25
classical_sup simp

Cla_plus simp

BINF_Cla simp

classical_ortho simp

qeq_collect Lemma 31
qeq_collect_guarded simp

Qeq_mult1 Lemma 32
Qeq_mult2
quantum_eq_unique simp Lemma 33
quantum_eq_add_state Lemma 34
simp means: the lemma is added to the simplifier

The accompanying theory can also be used to set Isabelle configuration options that then affect our
tool’s behavior. For example, use

declare [[show_types ,show_sorts ]]

in the accompanying theory to add type information to the output of our tool (this affects all Isa-
belle/HOL formulas printed as part of the subgoals). Alternatively, this can be done using the
isabelle_cmd command directly in the .qrhl file.

6.1 Declaring types
In an accompanying Isabelle file, it is possible to define types as usual using Isabelle commands such
as typedef, datatype, and typedecl. However, there is one important caveat: To use a type as the
type of a program variable, that type needs to instantiate the type class universe (representing types
of sufficiently small cardinality).28 For most builtin types, this is already the case. However, there are
two cases where one needs to be aware of this restriction.

First, when defining one’s own types (using typedef or datatype). In that case, Isabelle will not
know that the resulting type is small. Fortunately, in most cases (assuming the types from which the
new type is built are small) this can be done automatically with a single command:

derive universe typename

For example:

datatype ’a mytree = Node "’a mytree * ’a mytree" | Leaf ’a .
derive universe mytree

28For reasons described in footnote 5.
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The derive universe command is also useful for types imported from other Isabelle theories if they
were not yet shown to instantiate universe.

The second use case is the declaration of types using typedecl. Such declarations are useful to
specify in a development that T is just an arbitrary type, and that the whole proof holds for any type T.
(E.g., one might declare a type key of keys without further specifying its nature.) However, in this case,
Isabelle will not know that T is small (and thus instantiates universe) since nothing was specified about
T. One solution would be to add instantiation proofs with sorry. However, we have included a custom
command for declaring types that covers this situation: declare_variable_type. In its basic form, it
declares a new type that is of class universe:

declare_variable_type key

The new type can also have type parameters:

declare_variable_type ’a t1
declare_variable_type (’a,’b) t2
declare_variable_type (’a::finite ,’b) t3

where the last case constrains ’a to have the type class finite. Finally, the command also has a
convenient method for declaring that a given type has further type classes (besides universe) such as
in:

declare_variable_type key :: finite
declare_variable_type msg :: "{finite ,xor_group }"
declare_variable_type (’a:: finite) list :: finite

(universe is always implicitly added.29)
The command will check whether the existence of a type of the given sorts can be consistently

assumed. If this is not the case, a warning is issued.30 For example,

declare_variable_type wrong :: "{finite ,no_top }"

produces a warning since it would declare a type that is both finite and has no upper bound, and thus
lead to a contradiction.

6.2 Code generation
If all quantum variables involved in a claim about predicates have finite types, the claim will often
essentially be a claim about concrete operators and subspaces of fixed dimension. This means that by
explicit computation of those operators and subspaces, the claim can be decided. To support this, we
use the Isabelle code generation mechanism [5]. This mechanism allows us to provide explicit algorithms
for the various operations that occur in formulas. (For example, we might provide a matrix addition
algorithm for A+B where A,B :: (α, β) cblinfun.) In our case, we give algorithms for most operations
on bounded operators and subspaces. (We rely heavily on [10] which implements various algorithms
on matrices in Isabelle/HOL.) This allows us to directly evaluate most expressions involving bounded
operators and subspaces, as long as the involved types are finite.31

Unfortunately, most expressions involving predicates that occur as subgoals in our tool cannot be
directly evaluated using this mechanism. This is due to operations that map operators/subspaces on
individual variables to the whole (infinite-dimensional) space (i.e., », ∈q, =q). For example, we might
have the claim (

Jq1,q2K ∈q ccspan {EPR}
)
≤

(
Jq1,q2K ∈q ccspan {|00⟩, |11⟩}

)
(3)

Recall that Q ∈q A is an operation that maps a subspace A of the Hilbert space corresponding to the
type of variable Q to the corresponding subspace on the Hilbert space of all memories states. Thus the
lhs and rhs are infinite dimensional subspaces. Therefore, the lhs and rhs cannot be explicitly computed

29More precisely, declare_variable_type (’a1::s1,...,’an::sn) t :: s declares two facts: If ’a1,...,’an have sorts
(type classes) s1,...,sn, then the type (’a1,...,’an) t has sort s. (Where si and s are empty when omitted from the
command.) And if ’a1,...,’an have sorts s′1,...,s

′
n, then the type (’a1,...,’an) t has sort s′, where s′i and s′ are si

and s with the type class universe added.
30If the warning is not justified, it is possible to remove it by manually defining a new type (e.g., via typedef or datatype)

and showing that that type has the required sort (it is a sort witness). After that, declare_variable_type will not issue
a warning any more since the existence of a type of the right sort is ensured.

31Strictly speaking, besides being finite, the types need to implement the type class Enum.enum which means an explicit
list of all elements of the type must be provided.
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(at least not using a straighforward representation). Thus, we first need to convert the above expression
into the following equivalent finite dimensional one: span {EPR} ≤ span {|00⟩, |11⟩}.

In this specific case, this is a special case of the simple rule A ≤ B =⇒ (Q ∈q A) ≤ (Q ∈q B). In
general, however, removing the lifting operations (», ∈q, =q) can be nontrivial. These lifting operations
can be interspersed with different operations, and they may use different sets of quantum variables, or
differently ordered ones. For example, consider(

Jq1,q2K ∈q ccspan {EPR}
)
≤

(
Jq2,q1K ∈q ccspan {|00⟩, |11⟩}

)
(4)

(Note the different order q2,q1 on the rhs.) To make this into a finite dimensional expression, we first
have to rewrite Jq2,q1K ∈q ccspan {|00⟩, |11⟩} into Jq1,q2K ∈q

(
comm_op · ccspan {|00⟩, |11⟩}

)
(where

comm_op is an operator mapping |x, y⟩ to |y, x⟩), and only then can we apply the rule A ≤ B =⇒ (Q ∈q
A) ≤ (Q ∈q B) and get

ccspan {EPR} ≤ comm_op · ccspan {|00⟩, |11⟩}. (5)

We have automated this process (using a number of simplification rules and custom ML simplification
procedures). To perform this conversion, we use the following method in Isabelle:

apply (simp add: prepare_for_code)

By default, the Isabelle/HOL code generation implements real numbers as fractions. Then the code
generation would fail (abort) when the expression involves, e.g., square roots. Since operators and states
such as hadamard and EPR involve

√
2, we have activated instead code generation setup from [11]. This

setup allows us to compute with real numbers of the form a+ b
√
c for rational a, b, c. If even larger sets

of real numbers are involved in the computations, it is necessary to include a different code generation
setup, e.g., algebraic numbers [12].

To give a complete example, (4) can be shown as follows:

lemma
assumes[simp]: "declared_qvars Jq1 ,q2K"
shows "Jq1 ,q2K =q EPR ≤ Jq2 ,q1K ∈q ccspan {|(0, 0)⟩, |(1, 1)⟩}

apply (simp add: prepare_for_code)
by eval (* Invokes proof by code evaluation *)

(Here we have additionally used the shorthand notation =q so write the lhs of (4) more compactly.) This
example, the proof of (3), and a few other examples can be found in Code_Example.thy.32 (A remark:
the subgoal produced after apply (simp ...) in this example is not the same as in (5) but a somewhat
more complex one. This is because the simplification procedures do not necessarily find the simplest way
of removing the lifting operations.)

7 Examples

7.1 ROR-OT-CPA encryption from PRGs
Our first example proof is the ROR-OT-CPA security of a simple one-time encryption scheme.

The setting. The encryption scheme is defined by

enc : K ×M →M, enc(k,m) := G(k)⊕m
dec : K ×M →M, dec(k, c) := G(k)⊕ c

where G : K →M is a pseudorandom generator, k is the key, and m is the message (plaintext).
The ROR-OT-CPA security notion says, informally: The adversary cannot distinguish between an

encryption of m and an encryption of a random message, even if the adversary itself chooses m. More
formally:

Definition 1: ROR-OT-CPA advantage

32Bundled with the tool, and also directly available at https://raw.githubusercontent.com/dominique-unruh/
qrhl-tool/master/Code_Example.thy.
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For a stateful adversary A1, A2, let

AdvA1A2

ROR (η) :=
∣∣∣Pr[b = 1 : k ∈$ K, m← A1(), c := enc(k,m), b← A2(c)

]
−Pr

[
b = 1 : k ∈$ K, m← A1(), r ∈$ M, c := enc(k, r), b← A2(c)

]∣∣∣
where ∈$ means uniformly random choice, and the notation Pr[e : G] denotes the probability that e
holds after executing the instructions in G, and η is a security parameter (on which A1, A2, G,K,M
implicitly depend).

We call AdvA1A2

ROR the ROR-OT-CPA advantage of A1, A2.

With this definition, we can then, for example, define ROR-OT-CPA security of enc as “for any quantum-
polynomial-time A1, A2, AdvA1A2

ROR is negligible.” This is what is called asymptotic security. We will
instead follow the concrete security approach where we explicitly derive bounds for AdvA1A2

ROR .
Analogously, we define pseudorandomness of G : K → M by defining the PRG advantage of G:

Definition 2: PRG advantage
For an adversary A, let

AdvAPRG(η) :=
∣∣∣Pr[b = 1 : s ∈$ K, r := G(s), b← A(r)

]
− Pr

[
b = 1 : r ∈$ M, b← A(r)

]∣∣∣.
Again, we can define pseudorandomness of G by requiring that AdvAPRG is negligible for all quantum-
polynomial-time A, or reason about concrete advantages.

What we want to show is the following well-known fact: “If G is pseudorandom, then enc is ROR-
OT-CPA.” In the concrete security setting, we can state this more precisely:

Lemma 3: Concrete ROR-OT-CPA security of enc

For any A1, A2, there exists a B such that:
(i) Time(B) ≤ Time(A1) + Time(A2) +O(log η).
(ii) AdvA1,A2

ROR (η) ≤ AdvBPRG(η).
Here Time(A) refers to the worst-case runtime of A, and we assume that elementary operations (e.g.,⊕)
on K and M take time O(log η).

It is immediate that this also implies asymptotic ROR-OT-CPA security.
In our tool, we will almost show Lemma 3. Specifically, we will show property (ii), but we will not

show (i) (because our tool does not have the concept of the runtime of an algorithm). Instead, we
explicitly specify B and leave it to the user to check that B indeed satisfies (i). This is the state of the
art and is done in the same way, in, e.g., EasyCrypt and CryptHOL. Explicit reasoning about runtime
is left as future work.

In addition, we will leave the security parameter η implicit. This means that our proof is for fixed η,
but since it holds for any η, the case of variable η is implied.

Specification in Isabelle. The first step is to encode the encryption scheme itself. Since this involves
the definition of types (for keys and messages) and logical constants (enc and G), it needs to be done in
an accompanying Isabelle theory PrgEnc.thy.33

In this theory, we first declare the types key and msg as abstract (i.e., unspecified) types. We want
both types to be finite, i.e., of type class finite (otherwise uniform sampling of keys/messages is not
well-defined), and we want that on type msg, + represents the XOR operation (type class xor_group34).

declare_variable_type key :: finite
declare_variable_type msg :: "{finite ,xor_group }"

Now we can declare the PRG G and the encryption function enc. Since G is just an unspecified
function, all we need to do is to declare an uninterpreted constant with the right type. And enc can be
explicitly defined:

33The full theory file is bunded with the tool, and also directly available at https://raw.githubusercontent.com/
dominique-unruh/qrhl-tool/master/PrgEnc.thy.

34This type class declares msg as an abelian additive group with the extra law a+ a = 0.
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Games from Definition 1 Games from Definition 2

program rorcpa0 := {
k <$ uniform UNIV;
call A1;
c <- enc(k,m);
call A2;

}.

program rorcpa1 := {
k <$ uniform UNIV;
call A1;
r <$ uniform UNIV;
c <- enc(k,r);
call A2;

}.

program prg0 := {
s <$ uniform UNIV;
r <- G(s);
call B;

}.

program prg1 := {
r <$ uniform UNIV;
call B;

}.

Figure 4: Specification of games in prg-enc-rorcpa.qrhl.

axiomatization G :: "key ⇒ msg"
definition enc :: "key * msg ⇒ msg"

where [simp]: "enc = (λ(k,x). G(k)+x)"

In addition, we declare an prove some simple simplification rules for XOR that will be used in the
proof (my_simp, mysimp2, aux_bij).

Specification in our tool. We now proceed to the specifications that are done in our tool directly. We
show only excerpts, the full file is prg-enc-rorcpa.qrhl.35 We first specify the games from Definition 1
and Definition 2. Consider the lhs game from Definition 1. At first, it seems like we have a problem here.
The description of the game requires A1, A2 to be algorithms that take arguments and return values, i.e.,
procedures. But our language for programs does not support procedures. Fortunately, there is a simple
workaround. We set aside a few global variables (m,c,r,b) explicitly for storing inputs and outputs of
the adversary. So, for example, b ← A2(c) can be performed by declaring b, c as variables accessible
to A2, and then simply calling A2 without arguments in our program. The former is achieved by the
following commands:

adversary A1 vars m,cglobA ,qglobA.
adversary A2 vars c,b,cglobA ,qglobA.

(Here cglobA and qglobA are quantum variables that model the internal classical and quantum state of
A1, A2.) And for calling the adversary A2, we have the syntax call A2;. The resulting program code
is given in Figure 4. Note that UNIV is the set of all values (of a given type), so uniform UNIV samples
uniformly from all keys or messages, respectively.

While A1 and A2 are declared as unspecified adversaries, we need to specify B explicitly. (Recall
that we wanted to give an explict B so that the user can verify Lemma 3 (i).) In our case, the adversary
B is quite simple:

program B := { call A1; c <- r+m; call A2; }.

It is easy to see that (assuming a suitable formalization of runtime) the overhead of B is only O(log η).

The proof. The proof proceeds by first proving two facts as lemmas:

lemma rorcpa0_prg0: Pr[b=1: rorcpa0(rho)] = Pr[b=1: prg0(rho)].
lemma rorcpa1_prg1: Pr[b=1: rorcpa1(rho)] = Pr[b=1: prg1(rho)].

Here rho is an ambient variable of type program_state, so the lemmas hold for any initial state rho.
Recall that Pr[b=1:G(rho)] refers to the probability that b = 1 after G.

35Bundled with the tool, and also directly available at https://raw.githubusercontent.com/dominique-unruh/
qrhl-tool/master/prg-enc-rorcpa.qrhl.
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The proofs of both lemmas have similar form. In both cases, we first transform the claim into
a qRHL judgment using the tactic byqrhl We inline the definitions of rorcpa0, prg0, and B us-
ing the inline tactic. Trailing assignments are removed with wp left or wp right when they oc-
cur. Ambient subgoals are proven using the simp tactic, possibly giving some of the auxiliary lem-
mas from PrgEnc.thy as hints. And for subgoals of the form {. . .}. . . ; call A ∼∼∼ . . . ; call A{. . .},
we use the equal tactic to remove the last statement. We use the swap tactic to swap two state-
ments where needed to make matching call-statements occur together. Similarly, for subgoals
{. . .}. . . ; k <$ uniform UNIV ∼∼∼ . . . ; s <$ uniform UNIV{. . .}, we use the rnd tactic. In the proof of
lemma rorcpa0_prg0, we will need k and s to be sampled identically, so the basic form rnd. of the
tactic is sufficient. In rorcpa1_prg1 we encounter a more interesting case: We have the subgoal

{. . . }...; r <$ uniform UNIV;∼∼∼ ...; r <$ uniform UNIV;{ Cla[G k1 + r1 = r2 + m2

∧ b1 = b2 ∧ cglobA1 = cglobA2] ⊓ JqglobA1K ≡ q JqglobA2K }

At first glance, it would seem that the right thing to do is to sample r1 and r2 identically by applying
rnd. However, if r1 = r2, then the part G k1 + r1 = r2 + m2 of the postcondition will not be satisfied.
Instead, we want to pick r1 and r2 such that their XOR is r + G k1 + m2. This can be achieved by
the extended form of the rnd tactic that provides a witness for the joint distribution of r1 and r2:

rnd r,r <- map_distr (λr. (r,r + G k1 + m2)) (uniform UNIV).

This means r is picked uniformly, and r1 is r, and r2 is r + G k1 + m2 which makes the postcondition
true.

After having shown lemmas rorcpa0_prg0 and rorcpa1_prg1, we can show Lemma 3 in the following
form:

lemma final: abs (Pr[b=1: rorcpa0(rho)] - Pr[b=1: rorcpa1(rho)])
= abs (Pr[b=1: prg0(rho)] - Pr[b=1: prg1(rho)]).

This fact follows immediately (using the Isabelle simplifier) from the lemmas rorcpa0_prg0 and
rorcpa1_prg1, so we can show it using simp ! rorcpa0_prg0 rorcpa1_prg1.

7.2 IND-OT-CPA encryption from PRGs
The second example is the IND-OT-CPA security of the encryption scheme enc from Section 7.1. We
give this second example to show that security proofs that contain more than one reduction step do not
pose a problem. (The ROR-OT-CPA proof from Section 7.1 was a single reduction step to the PRG
security of G.) We only describe the differences to the proof from Section 7.1.

The setting. The IND-OT-CPA security notion says, informally: The adversary cannot distinguish
between an encryption of m1 or m2, even if the adversary chooses m1 and m2 itself. More formally:

Definition 4: IND-OT-CPA advantage
For a stateful adversary A1, A2, let

AdvA1A2

IND (η) :=
∣∣∣Pr[b = 1 : k ∈$ K, (m1,m2)← A1(), c := enc(k,m1), b← A2(c)

]
−Pr

[
b = 1 : k ∈$ K, (m1,m2)← A1(), c := enc(k,m2), b← A2(c)

]∣∣∣
We call AdvA1A2

IND the IND-OT-CPA advantage of A1, A2.

What we want to show is the following well-known fact: “If G is pseudorandom, then enc is IND-OT-
CPA.” In the concrete security setting, we can state this more precisely:

Lemma 5: Concrete IND-OT-CPA security of enc

For any A1, A2, there exist B1, B2 such that:
(i) Time(Bi) ≤ Time(A1) + Time(A2) +O(log η) for i = 1, 2.
(ii) AdvA1,A2

IND (η) ≤ AdvB1

PRG(η) + AdvB2

PRG(η).

As before, we will not show (i) in the tool but instead define B1 and B2 explicitly, leaving the runtime
analysis to the user.
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Games from Definition 4 Games from Definition 2

adversary A1 vars m1 ,m2 ,cglobA ,qglobA.
adversary A2 vars c,b,cglobA ,qglobA.

program indcpa0 := {
k <$ uniform UNIV;
call A1;
c <- enc(k,m1);
call A2;

}.

program indcpa1 := {
k <$ uniform UNIV;
call A1;
c <- enc(k,m2);
call A2;

}.

program prg0B1 := {
s <$ uniform UNIV;
r <- G(s);
call B1; }.

program prg1B1 := {
r <$ uniform UNIV;
call B1; }.

program prg0B2 := {
s <$ uniform UNIV;
r <- G(s);
call B2; }.

program prg1B2 := {
r <$ uniform UNIV;
call B2; }.

Figure 5: Specification of games in prg-enc-indcpa.qrhl.

Specification. The specification of the encryption scheme enc and the PRG G is unchanged. That is,
we use the same accompanying theory PrgEnc.thy as in Section 7.1.

In our tool,36 we have to describe the two IND-OT-CPA games from Definition 4 (indcpa0 and
indcpa1 in Figure 5), as well as the two PRG games from Definition 2. For the latter, there is a minor
issue: Since we have two reductions to the security of G, we need to invoke the security of G twice, once
for the adversary B1, and once for the adversary B2. Since our tool does not have a module system that
would allow us to generically instantiate the same game with different adversaries (e.g., EasyCrypt’s
module system allows us to specify the games with a module parameter that is then instantiated with
an adversary module), we need to write down the games from Definition 2 twice, once for adversary B1

(prg0B1 and prg1B1 in Figure 5) and once for adversary B2 (prg0B1 and prg1B1).
And, of course, we need to explicitly specify the adversaries B1 and B2:

program B1 := { call A1; c <- r+m1; call A2; }.
program B2 := { call A1; c <- r+m2; call A2; }.

It is easy to see that they satisfy the runtime conditions in Lemma 5 (i).

The proof. We use the following sequence of games:

indcpa0 =←→ prg0B1
Adv

B1
PRG←−−−−→ prg1B1 =←→ prg1B2

Adv
B2
PRG←−−−−→ prg0B2 =←→ indcpa1

Here =←→ means that we show that the probability of b = 1 is the same in the two games. And
Adv

Bi
PRG←−−−−→

means that the difference of Pr[b = 1] is AdvBi

PRG (we do not need to prove those arrows, since that
difference between those games is AdvBi

PRG by definition).
The three =←→ are shown in the following lemmas:

lemma indcpa0_prg0B1: Pr[b=1: indcpa0(rho)] = Pr[b=1: prg0B1(rho)].
lemma prg1B1_prg1B21: Pr[b=1: prg1B1(rho)] = Pr[b=1: prg1B2(rho)].
lemma indcpa1_prg0B2: Pr[b=1: indcpa1(rho)] = Pr[b=1: prg0B2(rho)].

The proofs of these lemmas are similar to the ones in Section 7.1.
From these three lemmas we immediately get the final result (which encodes Lemma 5 (ii)):

lemma final: abs( Pr[b=1: indcpa0(rho)] - Pr[b=1: indcpa1(rho)] ) <=
abs( Pr[b=1: prg0B1(rho)] - Pr[b=1: prg1B1(rho)] ) +
abs( Pr[b=1: prg0B2(rho)] - Pr[b=1: prg1B2(rho)] ).

This can be proven immediately using the tactic simp ! indcpa0_prg0B1 indcpa1_prg0B2
prg1B1_prg1B21.

36File prg-enc-indcpa.qrhl, bundled with the tool, and also directly available here: https://raw.githubusercontent.
com/dominique-unruh/qrhl-tool/master/prg-enc-indcpa.qrhl.
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7.3 Quantum equality
In the file equality.qrhl37 we give a simple example involving reasoning about quantum equality. We
show

{q1 ≡quant q2}prog1 ∼∼∼ prog2{q1 ≡quant q2} (6)

for the following programs:

program prog1 := {
b <$ uniform UNIV;
if (b=1) then on q apply hadamard;

else skip;
}.

program prog2 := {
on q apply hadamard;
b <$ uniform UNIV;
on q apply (if b=1

then hadamard else id\
_cblinfun); }.

The first program prog1 picks a random bit b and applies the Hadamard operation H to q iff b = 1.
The second program prog2 additionally first applies H, then picks b, and then applies H iff b = 1. Since
H2 = id , in both programs H is applied to q with probability 1

2 , so we expect them to have the same
effect on q. This is what (6) expresses.

There are two important differences between prog1 and prog2. First, prog2 performs an additional
application of H which means that the b = 1 case of prog2 corresponds to the b = 0 case in prog1 and
vice versa. And secondly, we have written the conditional application of H differently. In prog1, if b = 1,
H is applied, otherwise nothing is done. In contrast, in prog2, there is always an application on q, but the
operator that is applied is computed using the expression if b=1 then hadamard else id_cblinfun
which evaluates to H or to the identity. In other words, in prog1, we use a language-level conditional
and perform an actual branching. While in prog2, no branching occurs, and the conditional is encoded
in the computation of the unitary that is applied. Of course, this should not make a difference, but
we formulated the two programs differently to demonstrate that our logic can handle both approaches
gracefully.

We will formalize two proofs. The first is a bit longer, and explicitly states the invariants and case
distinctions that are made. This makes the proof more instructive. The second proof makes is as terse
as possible, simply applying tactics to remove statements from the end of the programs, and relying on
the simplifier to remove the final, lengthy, verification condition.

The “instructive” proof. We start with the qRHL subgoal

{q1 ≡quant q2}call prog1;∼∼∼ call prog2;{q1 ≡quant q2}

and use the tactic inline to inline the code of both programs. Then we use seq 0 1: I1 with I1 :=
quantum_equality_full id_cblinfun Jq1K hadamard Jq2K to split off the first statement of the right
program. That is, we claim that after executing the first statement of the right program (an application
of Hadamard H on q), the precondition q1 ≡quant q2 is transformed into id q1 ≡quant Hq2. Intuitively,
this is what we expect, because if originally q1 ≡quant q2, and the new q2 is the result of applying H to
q2, then the new q2 should equal q1 if we apply another H to it. The resulting subgoal can be solved
easily using wp right. skip. simp.

We are left with the new goal

{I1} b <$ uniform UNIV; if (b=1) then on q apply hadamard; else skip;

∼∼∼ b <$ uniform UNIV; on q apply (if b=1 then hadamard else id_cblinfun); {q1 ≡quant q2}

We then claim that the sampling of b on both sides leads to b1 ̸= b2. That is, we use the tactic seq 1
1: I2 with I2 := quantum_equality_full id_cblinfun Jq1K hadamard Jq2K ⊓ Cla[b1̸=b2]. to split
off the two samplings into a separate qRHL judgement. That judgement can be solved using the rnd
tactic. Since we want b1 ̸= b2 to hold, we cannot use the simple form of rnd, but instead we use rnd
b,b <- map_distr (λb. (b,b+1)) (uniform UNIV) to tell the tool to sample b1 and b2 so that they
will always be inequal. (Note: b+ 1 is the negation of the bit b since + is XOR on bits.) We use skip.
simp! to discharge the remainder of this subgoal.

37Bundled with the tool, and also available directly at https://raw.githubusercontent.com/dominique-unruh/
qrhl-tool/master/equality.qrhl.
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program teleport := {
A,B <q EPR;
on C,A apply CNOT;
on C apply hadamard;
a <- measure A with computational_basis;
c <- measure C with computational_basis;
if (a=1) then on B apply pauliX;

else skip;
if (c=1) then on B apply pauliZ;

else skip; }.

ψ

EPR

C

A

B

H

/⌢ a

/⌢

X
if a=1

c

Z
if c=1

ψ

Figure 6: Quantum teleportation as a program and as a circuit.

Now, we are left with the subgoal

{I2} if (b=1) then on q apply hadamard; else skip;

∼∼∼ on q apply (if b=1 then hadamard else id_cblinfun); {q1 ≡quant q2} (7)

Note that I2 contains the program variables b1, b2 upon which further branching depends. To be able to
make a case distinction over their values, we need to be able to refer to their values in the ambient logic.
To this end, we apply the tactic case z := b1. This adds Cla[b1 = z] to the precondition where z is an
ambient variable. (That means that we can treat z as a fixed value and make a case distinction over its
value.) The case distinction itself is done via casesplit z=0. This will create two new subgoals, one
with the additional assumption (in the ambient logic, not in the precondition) that z = 0, and one that
z ̸= 0. The rest of the subgoal is still as in (7).

To finish the first subgoal, we apply wp left. wp right. which removes the remaining statements
and changes the postcondition accordingly. Then skip. simp. solves the subgoal. The z ̸= 0 subgoal is
solved analogously.

The “terse” proof. As it turns out, the previous proof is much more verbose than needed. Instead
of explicitly using seq, case, and casesplit to decompose the proof into understandable subgoals, we
can use the “straightforward” approach and simply remove statement by statement from the end of the
programs, and leave it to the simplifier to prove the resulting statement. That is, we use wp left. wp
right to remove the conditional applications of H, then we use rnd b,b <- map_distr (λb. (b,b+1))
(uniform UNIV) to remove the two samplings (in a way that ensures b1 ̸= b2). We use wp right to
remove the remaining application of H in the first line of the right program, and then apply skip. We
get a lengthy and hardly readable verification condition, but fortunately, it can be discharged by an
application of simp.

Why did we need the more complex approach in the first proof? In this simple example, we did
not. However, in more complex cases, breaking the proof down in individual cases, and simplifying
intermediate pre- and postconditions may make it easier for the simplifier (if the overall goal is too
complex to be solved in one go), and it may help the user to debug the proof. (For example, to figure
out the right witness to be used in the rnd b,b <- ... tactic, it helps to have a readable pre- and
postcondition. And case distinctions help us to distinguish in which case a problem arises and to narrow
down what it is.

7.4 Quantum teleportation
The final example is the analysis of quantum teleportation [3]. Quantum teleportation is a quantum
protocol that allows us to move a qubit from a quantum register C to a quantum register B with
only classical communication between the system containing C and the system containing B (assuming
a shared initial state). The program teleport that describes the teleportation process is shown in
Figure 6. We will show the following fact:

{C1 ≡quant A2}teleport∼∼∼ skip{B1 ≡quant A2} (8)

That is, we show that if C1 contains a qubit that is equal to A2, then after teleporting C1 to B1, B1 will
be equal to A2 as expected.
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As with the example from Section 7.3, we formalize two proofs of (8), an “instructive” one with
explictly stated intermediate invariants and case distinctions, and a “terse” one that simply applies wp
as often as needed and relies on Isabelle to decide the final verification condition.

This example serves both as an illustration that we can analyze protocols that make use of non-trivial
quantum effects (as opposed to the examples in Section 7.1 and Section 7.2 which simply maintained
equality between two quantum states without ever performing any explicit operations on it), and as a
further example on how to use the quantum equality.

The “instructive” proof. This proof is formalized in teleport.qrhl.38 The initial subgoal is (8).
We use the tactic inline teleport to inline the definition of teleport. First, we reason about the first
instruction in teleport, the initialization of A,B with an EPR state (A,B <q EPR). We claim that after
that step, the invariant I1 := (C1 ≡quant A2) ⊓ (span{EPR}»JA1, B1K) holds. Intuitively, this is what we
expect, since after initializing A,B with EPR on the left side, their state with will be in span {EPR}. We
formalize this with the tactic seq 1 0: I1, and the resulting subgoal can be proven directly using wp
left. skip. simp.

Then we rewrite the precondition I1 into

I2 := (quantum_equality_full id_cblinfun JC1, A1, B1K (addState EPR) JA2K)

using tactic conseq pre: I2. We get a new subgoal I1 ≤ I2 which can be proven using simp
quantum_eq_add_state. (quantum_eq_add_state is the Isabelle formulation of Lemma 34 in [16]).
Intuitively, I2 states that after the initialization, C1A1B1 are in the same state as A2 would be if we
were to add the state EPR to it.

We now have the subgoal
{I2}c1 ∼∼∼ skip{B1 ≡quant A2}

where c1 is teleport without the first line.
We now show that the next two lines (applying CNOT and Hadamard) lead to the following invariant:

I3 :=
(
quantum_equality_full id_cblinfun JC1, A1, B1K(

(hadamard⊗ id_cblinfun) · assoc_op∗ · (CNOT⊗ id_cblinfun) · assoc_op · addState EPR
)

JA2K
)

(We use the usual mathematical symbols ⊗ and · here for readability. In the tool, we would use ⊗o and
◦CLplaceholder.) In other words, we claim that after those two lines, the quantum registers C1A1B1 will
contain the state that A2 would contain if we added the state EPR to it, and then applied CNOT on the
first two and Hadamard on the first register. What are the unexpected additional operations assoc_op
and assoc_op∗? These are needed due to the fact that in Isabelle/HOL, (α×β)× γ and α× (β× γ) are
not the same type, although in handwritten mathematics, one usually identifies those types. For example
addState EPR is an operator from ℓ2(bit) to ℓ2(bit × (bit × bit)). And CNOT ⊗ id_cblinfun is an
operator on ℓ2((bit× bit)× bit). So we cannot multiply those operators (a type error would be raised
by Isabelle and by our tool). Instead, we need to apply assoc_op in between, which is the canonical
isomorphism between ℓ2(bit × (bit × bit)) to ℓ2((bit × bit) × bit). (If we identify (α × β) × γ and
α × (β × γ), then assoc_op is the identity.) Similarly, assoc_op∗ is the canonical isomorphism in the
opposite direction.

In the tool, claiming that the new invariant after the CNOT and the Hadamard is I3 is done via the
tactic seq 2 0: I3. To prove the new subgoal resulting from seq, we apply wp left. wp left. skip.
simp. This leaves us with an ambient subgoal relating quantum predicates. Unfortunately, the simp
tactic is not able to solve this subgoal. Therefore we outsourced this subgoal to Isabelle/HOL. Namely,
we copy-and-pasted the subgoal into the accompanying theory Teleport.thy,39 That is, we proved a
lemma of the form

lemma teleport_goal1:
assumes[simp]: "declared_qvars JA1 ,B1 ,C1 ,A2K"
shows "..."

38Bundled with the tool, and also directly available at https://raw.githubusercontent.com/dominique-unruh/
qrhl-tool/master/teleport.qrhl.

39Bundled with the tool, and also directly available at https://raw.githubusercontent.com/dominique-unruh/
qrhl-tool/master/Teleport.thy.
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where ... is the copy-and-pasted subgoal. Note the assumption "declared_qvars JA1,B1,C1,A2K".
This one basically tells Isabelle that A1,B1,C2,A2 can be treated as distinct quantum variables. (Be-
cause logically, free variables in an Isabelle lemma do not have to refer to different entities.) With
this assumption added to the simplifier (using [simp]), simplification rules that reason about quantum
variables will work correctly. The lemma is proven by stating two intermediate simple facts and then
running the simplifier with a collection of facts from the theory QRHL. We omit the details. Once we
have shown telepost_goal1 in Isabelle, we can use it in our tool. Namely, to prove the subgoal, we use
the tactic rule telepost_goal1 in our tool. This leaves us with one new subgoal (corresponding to the
"declared_qvars JA1,B1,C1,A2K" assumption of the lemma) which can be discharged by simp.

The goal is now:
{I3}c3 ∼∼∼ skip{B1 ≡quant A2}

where c3 refers to teleport without the first three lines.
Next we analyze the effect of the first measurement. If the outcome of the measurement is a1, then

this means that the state of A1 is projected onto |a1⟩A1
. So, after the measurement, the predicate

I4 := proj |a1⟩»JA1K · I3 should be satisfied. We express this using the tactic seq 1 0: I4. To prove
the resulting subgoal, we apply the tactics wp left. simp. skip. simp as usual. This leaves us with
an ambient subgoal of roughly the following form:

∀x. I3 ≤
(
proj |x⟩»JA1K · I3

)
⊓
(
JA1K =q |x⟩

)
+ ortho (JA1K =q |x⟩)

We remove the all-quantifier using tactic fix a’. Then the fact can be shown using tactic rule
move_plus_meas_rule,40 followed by simplification.

We are now left with the goal

{I4}c4 ∼∼∼ skip{B1 ≡quant A2}

where c4 is teleport without the first four lines.
In order to be able to refer to the value of a1 in the ambient logic, we apply the tactic case a’, this

changes the subgoal into
{Cla[a1 = a′] ⊓ I4}c4 ∼∼∼ skip{B1 ≡quant A2}

We now analyze the effect of the second measurement. If the outcome of the measurement is c1,
then this means that the state of C1 is projected onto |c1⟩C1

. So, after the measurement, the predicate
I5 := Cla[a1 = a′] ⊓ Proj (span {ket c1})»JC1K · I4 holds. This step is similar to the previous one
(seq 1 0: I5 etc.), we omit the details. We again use tactic case c’ to be able to refer to c1 in the
ambient logic. We have the following goal:

{Cla[c1 = c′] ⊓ I5}c5 ∼∼∼ skip{B1 ≡quant A2}

where c5 is teleport without the first five lines.
Now we will do a case distinction over the four different possibilities for a′, c′. We get the first case

using the tactics casesplit a’=0. casesplit c’=0. The current subgoal now has the assumptions
a′ = 0 and c′ = 0. Using these assumptions, we can rewrite the precondition into update from here

I6 := Cla[a1 = 0 ∧ c1 = 0] ⊓ proj |0⟩»JC1K · proj |0⟩»JA1K · I3︸ ︷︷ ︸
=:I7

using conseq pre: I6. Besides minor reordering of terms, we basically just substituted a′ := 0 and
c′ := 0 (which is justified by the assumptions), so the resulting subgoal can be solved directly by simp!.
The goal is then:

{I6}c5 ∼∼∼ skip{B1 ≡quant A2}

Now we analyze the remaining two lines of teleport, namely the conditionally applied unitaries
pauliX and pauliZ. In the case a1 = 0, c1 = 0, they will not be applied, so after the last two lines, the
predicate I7 is still satisfied. (In the other three cases, additionally pauliZ»JB1K and/or pauliX»JB1K
would be multiplied to I7.) We show this using seq 2 0: I7. wp left. wp left. skip. simp!.

We finally have the subgoal
{I7}skip ∼∼∼ skip{B1 ≡quant A2}

40The lemma move_plus_meas_rule says (Proj C)»Q · A ≤ B =⇒ A ≤ (B ⊓ C»Q) + (ortho C)»Q and is useful for
simplifying inequalities between predicates arising from wp applied to a measurement.
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This is transformed into I7 ≤ (B1 ≡quant A2) by tactic skip. What does this inequality say? It says that
if we have a state on C1A1B1 that is equal to A2 after adding EPR and applying CNOT and Hadamard,
and then we apply projections onto |0⟩A1

and |0⟩C1
to the state, then that state satisfies B1 ≡quant A2.

Showing this inequality is the core of the actual proof that teleportation works. We show this inequality
by explicit computation of the involved operators and subspaces. We use the code generation mechanism
of Isabelle for this explicit computation. That is, we copy-and-paste the subgoal into the accompanying
theory Teleport.thy as a lemma.

lemma teleport_goal2_a0c0:
assumes[simp]: "declared_qvars JA1 ,B1 ,C1 ,A2K"
shows "I7 ≤ (B1 ≡quant A2)"

apply (simp add: prepare_for_code) by eval

(See Section 6 for an explanation of prepare_for_code and eval.) With this lemma in the accompanying
theory, we can solve the goal in our tool using rule teleport_goal2_a0c0. simp!.

The other three cases for a′, c′ are solved analogously.

The “terse” proof. The proof described above shows the predicates that hold after each step of the
teleportation program. However, a much shorter (and less explicit) proof is possible, too. This proof is
given in teleport-terse.qrhl.41 The definition of the program teleport is the same as before (see
Figure 6). To prove the goal (8), we unfolding the definition of teleport using inline teleport, then
apply the tactic wp left seven times to get a goal of the form {. . .}skip ∼∼∼ skip{. . .}, and the apply
skip. We now get a lengthy inequality between predicates as the remaining goal. While this inequality is
hardly readable (it is an 734 character string), it is amenable to fully automated computation: the tactic
simp prepare_for_code rewrites the goal into a form involving only finite-dimensional operationrs, and
isa eval solves it by computation. (See Section 6.2.)
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Symbol index
|x| Absolute value of x / cardinality of set x
V qu Quantum variables in V
V cl Classical variables in V
fv(e) Free variables in an expression e (or program)
overwrc Overwritten variables in program c

Typev Type of variable v
TypesetX Type of a set V of variables
TypelistV Type of a list V of variables
Typeexpe Type of an expression e
JeKm Denotation of a classical expression e, evaluated on classi-

cal memory m
c A program
d A program
JcK Denotation of a program c

JcKclass Classical denotation of a program c

skip Program that does nothing
if e then c1 else c2 Statement: If (conditional)
while e do c Statement: While loop

x
$← e Statement: Sample x according to distribution e

q1 . . .qn
q← e Statement: Initialize q1, . . . ,qn with quantum state e
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apply q1 . . .qn to U Statement: Apply unitary/isometry U to quantum regis-
ters q1 . . .qn

x←measure q1 . . .qn with e Statement: Measure quantum variables q1 . . .qn with
measurement e

B Booleans. B = {true, false}
ℓ2(B) Hilbert space with basis indexed by B
ℓ2[V ] ℓ2(TypesetV ) – Hilbert space with basis TypesetV

D(B) Distributions on B
D[V ] D(TypesetV ) – Distributions on TypesetV

Iso(X,Y ), Iso(X) Isometries from ℓ2(X) to ℓ2(Y ) (on ℓ2(X))
Iso[V,W ], Iso(V ) Isometries from ℓ2[V ] to ℓ2[W ] (on ℓ2[V ])
U(X,Y ),U(X) Unitaries from ℓ2(X) to ℓ2(Y ) (on ℓ2(X))
U[V,W ],U(V ) Unitaries from ℓ2[V ] to ℓ2[W ] (on ℓ2[V ])
D≤1(X) Sub-probability distributions over X
D≤1[V ] Sub-probability distributions over variables V
C Complex numbers
R Real numbers
R≥0 Non-negative real numbers
T(X) Trace class operators on ℓ2(X)

T+(X) Positive trace class operators on ℓ2(X)

A⊗B Tensor product of vectors/operators A and B
T[V ] Trace class operators on ℓ2[V ]

T+[V ] Positive trace class operators on ℓ2[V ]

Tcq [V ] Trace class cq-operators on ℓ2[V ]

δx Point distribution: returns x with probability 1

↓e(ρ) Restrict state/distribution ρ to the case e = true holds
c;d Sequential composition of programs
true Truth value “true”
false Truth value “false”
T+

cq [V ] Positive trace class cq-operators on ℓ2[V ]

lift(µ) Transforms a distribution µ into a density operator
A»Q Lifts operator or subspace to variables Q
E A superoperator
B(X,Y ) Bounded linear operators from ℓ2(X) to ℓ2(Y )

B≤1(X,Y ) Bounded linear operators with operator norm ≤ 1

B[V,W ] Bounded linear operators from ℓ2[V ] to ℓ2(W )

idV Identity on ℓ2[V ] or on B[V ]

id Identity
A∗ Adjoint of the operator A
|b⟩, |b⟩V Basis vector in Hilbert space ℓ2[V ]

{F}c∼∼∼ c′{G} Quantum relational Hoare judgment
{F}c∼∼∼ c′{G}nonsep qRHL judgment, non-separable definition
{F}c∼∼∼ c′{G}uniform qRHL judgment, uniform definition
{F}c∼∼∼ c′{G}class pRHL judgement (classical)
tr[V ]

W (ρ) Partial trace, keeping variables V , dropping variables W
imA Image of A
dom f Domain of f
∥x∥ ℓ2-norm of vector x, or operator-norm
trM Trace of matrix/operator M
Cla[e] Classical predicate meaning e = true

spanA Span, smallest subspace containing A
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X1 ≡quant X2 Equality of quantum variables X1 and X2

proj(x) Projector onto x, i.e., xx∗

Pr[e : c(ρ)] Probability that e holds after running c on initial state ρ
Urename,σ Unitary: Renames variables according to bijection σ
Erename,σ cq-superoperator: Renames variables according to bijec-

tion σ
eσ, cσ Apply variable renaming σ to expression e
e{f/x} Substitute f for variable x in e
f |M Restriction of function f to domain M
x A classical program variable
y A classical program variable
q A quantum program variable
f(x := y) Function update, i.e., (f(x := y))(x) = y

x← e Program: assigns expression e to x
suppµ Support of distribution µ
suppM Support of an operator M
marginali(µ) i-th marginal distribution of µ (for µ ∈ D≤1(X × Y ), i =

1, 2)
S⊥ Orthogonal complement of subspace S
idx1 c, idx1 e Add index 1 to every variables in c or e
Meas(D,E) Projective measurements on ℓ2(E) with outcomes in D
Uvars,Q Canonical isomorphism between ℓ2(TypelistQ ) and ℓ2[TypesetQ ]

for a list Q
A÷ ψ Part of A containing ψ
m1m2 Union (concatenation) of memories m1, m2

2M Powerset of M
A⊗o B Tensor product of two operators/matrices 14
A⊗l B Tensor product of two vectors/quantum states 15
A⊗S B Tensor product of two subspaces 18
◦CLplaceholder Composition (product) of operators/matrices 14
∗V placeholder Applying operator/matrix to vector 14
∗Splaceholder Applying operator/matrix to subspace S 14
x <- e; Assignment (tool program syntax) 7
x <$ e; Sampling (tool program syntax) 7
q1, . . . ,qn <q e; Quantum initialization (tool program syntax) 8
Pr[v : P (ρ)] Isabelle/HOL constant for probability of v = 1 after run-

ning P
13

Jq1, . . . ,qnK Typed tuple of quantum variables (Isabelle/HOL syntax)
A»Q Applying operator A to variables Q (i.e., lifting A to the

whole memory via Q)
15

Q ∈q S Lifting subspace S to the whole memory via Q 16
Q =q ψ Lifting state ψ to the whole memory via Q 16
Q1 ≡q Q2, Q1 ==q Q2 Isabelle/HOL syntax for quantum equality Q1 ≡quant Q2 17
Qeq[q1, . . . ,qn = q′

1, . . . ,q
′
m] Isabelle/HOL syntax for quantum equality

q1, . . . ,qn ≡quant q
′
1, . . . ,q

′
m

17

Jq1, . . . ,qnK Typed tuple of quantum variables (Isabelle/HOL syntax) 15
P ÷ ψ»Q Isabelle/HOL syntax for space_div (related to P ÷ ψ) 18
⌊x⌋ x rounded down to the next integer
x ∈$ M x uniformly sampled from M 38
AdvA1A2

ROR (η) Advantage of adversary A1, A2 in ROR-OT-CPA game
with security parameter η

38
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AdvA1A2

IND (η) Advantage of adversary A1, A2 in IND-OT-CPA game with
security parameter η

40

AdvAPRG(η) Advantage of adversary A in PRG-OT-CPA game with
security parameter η

38

Time(A) Worst-case runtime of A 38
A ⊓B Intersection of subspaces (Isabelle/HOL syntax) 11
A ⊔B Sum of subspaces (Isabelle/HOL syntax) 11
INF x:Z. e Intersection of family of subspaces (Isabelle/HOL syntax) 11
bot Zero subspace (Isabelle/HOL syntax) 11
top Full subspace (Isabelle/HOL syntax) 11
a ◦e b Composition of expressions a, b as relations
R1 ◦R2 Composition of relations
N Natural numbers
A∆B Symmetric difference of sets

Index
{ (tool command), 6
} (tool command), 6

addState (Isabelle/HOL constant), 14
adj (Isabelle/HOL constant), 14
admit (tactic), 18
advantage

IND-OT-CPA, 40
PRG, 38
ROR-OT-CPA, 38

adversary (tool command), 4
ambient subgoal, 1
ambient var (tool command), 4
apply (tool program syntax)

on ..., 9
assoc_op (Isabelle/HOL constant), 15

binary_measurement (Isabelle/HOL constant),
18

bind_distr (Isabelle/HOL constant), 13
bit (Isabelle/HOL type), 11
byqrhl (tactic), 19

call (tool program syntax), 10
case (tactic), 19
casesplit (tactic), 20
cblinfun (Isabelle/HOL type), 12
cblinfun_apply (Isabelle/HOL constant), 14
cblinfun_compose (Isabelle/HOL constant), 14
cblinfun_image (Isabelle/HOL constant), 14
ccspan (Isabelle/HOL constant), 17
ccsubspace (Isabelle/HOL type), 11
cheat mode, 3
classical var (tool command), 3
classical_equality (Isabelle/HOL constant),

17
classical_equality_full (Isabelle/HOL con-

stant), 17
classical_subspace (Isabelle/HOL constant),

17

clear (tactic), 20
CNOT (Isabelle/HOL constant), 14
comm_op (Isabelle/HOL constant), 14
computational_basis (Isabelle/HOL con-

stant), 18
configuration file, 2
conseq (tactic), 20

declared_qvars (Isabelle/HOL constant), 17
distinct_qvars (Isabelle/HOL constant), 16
distinct_qvars_op_pred (Isabelle/HOL con-

stant), 16
distinct_qvars_op_vars (Isabelle/HOL con-

stant), 16
distinct_qvars_pred_var (Isabelle/HOL con-

stant), 16
distr (Isabelle/HOL type), 11

ell2 (Isabelle/HOL type), 11
EPR (Isabelle/HOL constant), 15
equal (tactic), 21

fix (tactic), 22
focusing, 6
frame (tactic), 22

hadamard (Isabelle/HOL constant), 14

id_cblinfun (Isabelle/HOL constant), 14
if (tactic), 22
if ... then ... else (tool program syntax),

9
include (tool command), 3
IND-OT-CPA, 40

advantage, 40
inline (tactic), 23
is_Proj (Isabelle/HOL constant), 14
isa (tactic), 23
isabelle (tool command), 3
isabelle_cmd (tool command), 3
isometry (Isabelle/HOL constant), 14
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ket (Isabelle/HOL constant), 15

l2bounded (Isabelle/HOL type), 12
lemma (tool command), 5
liftOp (Isabelle/HOL constant), 15
liftSpace (Isabelle/HOL constant), 16
local (tactic), 23
local (tool program syntax), 10

map_distr (Isabelle/HOL constant), 13
measure (tactic), 24
measure ... with (tool program syntax), 8
measurement (Isabelle/HOL type), 12
mem2 (Isabelle/HOL type), 12
mkIso, 9
mkUnit, 8
mproj (Isabelle/HOL constant), 18
mtotal (Isabelle/HOL constant), 18

o2h (tactic), 24
on ... apply (tool program syntax), 9
ortho (Isabelle/HOL constant), 18

pauliX (Isabelle/HOL constant), 14
pauliY (Isabelle/HOL constant), 14
pauliZ (Isabelle/HOL constant), 14
point_distr (Isabelle/HOL constant), 13
predicate (Isabelle/HOL type), 12
PRG advantage, 38
print (tool command), 7
prob (Isabelle/HOL constant), 13
program (Isabelle/HOL type), 12
program (tool command), 4
program_state (Isabelle/HOL type), 12
Proj (Isabelle/HOL constant), 14
proj_classical_set (Isabelle/HOL constant),

14

qed (tool command), 6
Qeq[ ] (Isabelle/HOL constant), 17

qrhl (tool command), 5
qrhl-tool.conf, 2
quantum var (tool command), 3

rename (tactic), 26
rewrite (tactic), 26
rnd (tactic), 27
ROR-OT-CPA, 37

advantage, 38
rule (tactic), 28

semiclassical (tactic), 28
seq (tactic), 29
simp (tactic), 29
skip (tactic), 30
skip (tool program syntax), 7
sp (tactic), 30
space_div (Isabelle/HOL constant), 18
squash (tactic), 31
supp (Isabelle/HOL constant), 13
swap (tactic), 31

tensor_ell2 (Isabelle/HOL constant), 15
tensor_op (Isabelle/HOL constant), 14
tensorSpace (Isabelle/HOL constant), 18

uniform (Isabelle/HOL constant), 13
unitary (Isabelle/HOL constant), 14
universe (Isabelle typeclass), 4
Uoracle (Isabelle/HOL constant), 15

var (tool syntax)
ambient, 4
classical, 3
quantum, 3

variable (Isabelle/HOL type), 12
variables (Isabelle/HOL type), 12

weight (Isabelle/HOL constant), 13
wp (tactic), 34
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